7.已知t=(x+1)(x+5),s=(x+3)2,則t和s的大小關(guān)系正確的是( 。
A.t>sB.t≥sC.t<sD.t≤s

分析 利用作差法,即可比較t和s的大。

解答 解:∵t=(x+1)(x+5),s=(x+3)2
∴t-s=(x2+6x+5)-(x2+6x+9)=-4<0,
∴t<s.
故選:C.

點(diǎn)評(píng) 本題考查了利用作差法比較大小的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.“a≤-3”是“f(x)=-|x+a|在[3,+∞)上為減函數(shù)”的什么條件( 。
A.充分不必要B.必要不充分C.充要D.不充分不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在橢圓C上,且PF1⊥F1F2,|PF1|=$\frac{4}{3}$,|PF2|=$\frac{14}{3}$.求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=a•4x+2x+1,其中a∈R.
(1)設(shè)函數(shù)g(x)=lg$\frac{f(x)}{2}$,若當(dāng)x∈(-∞,1]時(shí),g(x)有意義,求a的取值范圍;
(2)是否存在是實(shí)數(shù)m,使得關(guān)于x的方程f(x)=m對(duì)于任意非正實(shí)數(shù)a,均有實(shí)數(shù)根?若存在,求m;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.一直田徑隊(duì)有100名運(yùn)動(dòng)員,其中男運(yùn)動(dòng)員60人,女運(yùn)動(dòng)員40人,要從中抽取一個(gè)容量為30的樣本,試確定用何種方法抽取,并寫(xiě)出具體的實(shí)施操作.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.以(1,0)為圓心的圓與直線y=x+m相切于點(diǎn)(0,m),則圓的方程是(  )
A.(x+1)2+y2=1B.(x-1)2+y2=1C.(x+1)2+y2=2D.(x-1)2+y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=x2-2cosx,對(duì)于$[-\frac{2π}{3},\;\frac{2π}{3}]$上的任意x1,x2有如下條件:
①x1>x2;       ②${x_1}^2>{x_2}^2$;   ③x1>|x2|;   ④|x1|>x2;
其中能使f(x1)>f(x2)恒成立的條件是②③ (填寫(xiě)序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足不等式f(x)<f(1)的x的取值范圍是(  )
A.(-1,1)B.(-1,0)C.(0,1)D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.集合A={x||x-2|+|x+1|≥5},B=$\left\{{x|\frac{16}{x}>x}\right\}$,則A∩B=( 。
A.(-∞,-4)∪[3,4)B.(-4,-2]∪[3,4)C.(-∞,-2]∪[3,+∞)D.(-∞,-2]∪(4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案