函數(shù)數(shù)學(xué)公式(x>0,a>0).
(1)當(dāng)a=1時,證明:f(x)在(1,+∞)上是增函數(shù);
(2)若f(x)在(0,2)上是減函數(shù),求a的取值范圍.

證明:(1)當(dāng)a=1時,(x>0,a>0),f′(x)=1-=.…(2分)
∵x>1,∴x2>1,即 x2-1>0,∴>0,即 f′(x)>0,…(5分)
∴f(x)在(1,+∞)上是增函數(shù). …(6分)
(2)f′(x)=1-=,…(7分)
使f(x)在(0,2)上是減函數(shù),則當(dāng)x∈(0,2)時,x2-a≤0恒成立,…(9分)
即a≥x2恒成立,即a≥22=4,∴a≥4. …(12分)
分析:(1)當(dāng)a=1時,f′(x)=1-=,由x>1可得f′(x)>0,從而得f(x)在(1,+∞)上是增函數(shù).
(2)先求出f′(x)=1-=,由題意可得當(dāng)x∈(0,2)時,x2-a≤0恒成立,故a≥22=4.
點(diǎn)評:本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及函數(shù)的恒成立問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面有四個命題:
(1)函數(shù)y=sin(
2
3
x+
π
2
)
是偶函數(shù);
(2)函數(shù)f(x)=|2cos2x-1|的最小正周期是π;
(3)函數(shù)f(x)=sin(x+
π
4
)在[-
π
2
,
π
2
]
上是增函數(shù);
(4)函數(shù)f(x)=asinx-bcosx的圖象的一條對稱軸為直線x=
π
4
,則a+b=0

其中正確命題的序號是
(1)(4)
(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
x
+lnx-n(a>0)
,其中n=
π
2
0
(2sin
t
2
cos
t
2
)dt.
若函數(shù)f(x)在定義域內(nèi)有零點(diǎn),則a的取值范圍是
(0,1]
(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:函數(shù)f(x)=
1
3
(1-x)
且|f(a)|<2,命題Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅,
(1)分別求命題P、Q為真命題時的實(shí)數(shù)a的取值范圍;
(2)當(dāng)實(shí)數(shù)a取何范圍時,命題P、Q中有且僅有一個為真命題;
(3)設(shè)P、Q皆為真時a的取值范圍為集合S,T={y|y=x+
m
x
,x∈R,x≠0,m>0}
,若?RT⊆S,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•閔行區(qū)一模)已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,0<ω<2,|φ|<
π
2
)
的一系列對應(yīng)值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)y=f(x)的解析式;
(2)(文)當(dāng)x∈[0,2π]時,求方程f(x)=2B的解.
(3)(理)若對任意的實(shí)數(shù)a,函數(shù)y=f(kx)(k>0),x∈(a,a+
3
]
的圖象與直線y=1有且僅有兩個不同的交點(diǎn),又當(dāng)x∈[0,
π
3
]
時,方程f(kx)=m恰有兩個不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=,g(x)=ax2bx(a,b∈R,a≠0).若yf(x)的圖像與yg(x)的圖像有且僅有兩個不同的公共點(diǎn)A(x1,y1),B(x2,y2),則下列判斷正確的是                                        (  )

A.當(dāng)a<0時,x1x2<0,y1y2>0

B.當(dāng)a<0時,x1x2>0,y1y2<0

C.當(dāng)a>0時,x1x2<0,y1y2<0

D.當(dāng)a>0時,x1x2>0,y1y2>0

查看答案和解析>>

同步練習(xí)冊答案