已知a,b∈R,若所對(duì)應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實(shí)數(shù)a,b,并求M的逆矩陣.
【答案】分析:首先分析題目已知所對(duì)應(yīng)的變換TM把直線L:2x-y=3變換為自身,故可根據(jù)變換的性質(zhì)列出一組方程式求解出a,b即可得到矩陣M,再根據(jù)MM1=E,求得M的逆矩陣即可.
解答:解:設(shè)P(x,y)為直線2x-y=3上任意一點(diǎn)其在M的作用下變?yōu)椋▁',y')

代入2x-y=3得:-(b+2)x+(2a-3)y=3其與2x-y=3完全一樣.
故得
則矩陣 又因?yàn)镸M1=E

點(diǎn)評(píng):此題主要考查矩陣變換的問題,其中涉及到逆矩陣的求法,題中是用一般方法求解,也可根據(jù)取特殊值法求解,具體題目具體分析找到最簡(jiǎn)便的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省無(wú)錫一中高三(上)第一次質(zhì)量檢測(cè)數(shù)學(xué)試卷.(理科)(解析版) 題型:解答題

已知a,b∈R,若所對(duì)應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實(shí)數(shù)a,b,并求M的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省揚(yáng)州市高郵中學(xué)高三(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知a,b∈R,若所對(duì)應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實(shí)數(shù)a,b,并求M的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江西省吉安市高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知a,b∈R,若所對(duì)應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實(shí)數(shù)a,b,并求M的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省泉州市惠安高級(jí)中學(xué)高三數(shù)學(xué)單元測(cè)試卷1(理科)(解析版) 題型:解答題

本題有(1)、(2)、(3)三個(gè)選答題,請(qǐng)考生任選2題作答.
(1)選修4-2:矩陣與變換
已知a,b∈R,若所對(duì)應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實(shí)數(shù)a,b,并求M的逆矩陣.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l的參數(shù)方程:(t為參數(shù))和圓C的極坐標(biāo)方程:
①將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
②判斷直線l和圓C的位置關(guān)系.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實(shí)數(shù)x的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案