設(shè)x,y∈R,則“x≥2且y≥2”是“x2+y2≥4”的
充分不必要
充分不必要
條件(從充分不必要、必要不充分、充分必要、既不充分也不必要四個(gè)中選一個(gè)填入空格).
分析:由x≥2且y≥2,可得x2≥4,y2≥4,再進(jìn)行判斷命題之間的關(guān)系;
解答:解:∵x≥2且y≥2,
∴x2≥4,y2≥4,∴x2+y2≥8⇒x2+y2≥4,
若x2+y2≥4,則推不出x≥2且y≥2,例如當(dāng)x=2,y=1時(shí),有x2+y2≥5≥4,
∴“x≥2且y≥2”是“x2+y2≥4”的充分不必要條件,
故答案為充分不必要條件.
點(diǎn)評:此題主要考查必要條件和充分條件的判斷,此類題是高考?嫉囊坏肋x擇題,做題時(shí)要知道必要條件和充分條件的定義即可求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,則“x≥2且y≥1”是“x2+y2≥4”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,則“x=0”是“復(fù)數(shù)x+yi為純虛數(shù)”的( 。l件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,則“x+y-4<0”是“x<0且y<0”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳二模)設(shè)x,y∈R,則“x≥1且y≥2”是“x+y≥3”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臨沂二模)給出下列四個(gè)結(jié)論:
①“若am2<bm2,則a<b”的逆命題是真命題;
②設(shè)x,y∈R,則“x≥2或y≥2”是“x2+y2≥4”的充分不必要條件;
③函數(shù)y=loga(x+1)+1(a>0且a≠1)的圖象必過點(diǎn)(0,1);
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2.
其中正確結(jié)論的序號(hào)是
②③
②③
.(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊答案