已知某算法的流程圖如圖所示,若輸入x=7,y=6,則輸出的有序數(shù)對為( 。
A、(13,14)
B、(12,13)
C、(14,13)
D、(13,12)
考點:程序框圖
專題:算法和程序框圖
分析:根據(jù)程序框圖的功能,進(jìn)行驗證,直到不滿足條件n<5即可.
解答: 解:當(dāng)x=7,y=6時,n=1,滿足條件n<5,x=7,y=8,n=2,
第二次運(yùn)行,n=2,滿足條件n<5,x=9,y=10,n=3,
第三次運(yùn)行,n=3,滿足條件n<5,x=11,y=12,n=4,
第四次運(yùn)行,n=4,滿足條件n<5,x=13,y=14,n=5,
此時不滿足條件n<5輸出x=13,y=14,
即輸出的實數(shù)對為(13,14),
故選:A.
點評:本題主要考查程序框圖的識別和應(yīng)用,根據(jù)程序運(yùn)行條件,進(jìn)行驗證即可得到.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若點P0(x0,y0)在橢圓
x2
a2
+
y2
b2
=1(a>b>0)外,過點P0作該橢圓的兩條切線的切點分別為P1,P2,則切點弦P1P2所在直線的方程為
x0x
a2
+
y0y
b2
=1.那么對于雙曲線,類似地,可以得到一個正確的命題為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個命題:
①若一個圓錐的底面半徑縮小到原來的
1
2
,其體積縮小到原來的
1
4
;
②若兩組數(shù)據(jù)的中位數(shù)相等,則它們的平均數(shù)也相等;
③直線x+y+1=0與圓x2+y2=
1
2
相切;
④“10a≥10b”是“l(fā)ga≥lgb”的充分不必要條件;
⑤過M(2,0)的直線l與橢圓
x2
2
+y2=1交于P1P2兩點,線段P1P2中點為P,設(shè)直線l的斜率為k1(k1≠0),直線OP的斜率為k2,則k1k2等于-
1
2

其中真命題的序號是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l與雙曲線C于A,B兩點(A,B在同一支上),F(xiàn)1,F(xiàn)2為雙曲線的兩個焦點,則F1,F(xiàn)2在( 。
A、以A,B為焦點的橢圓上或線段AB的垂直平分線上
B、以A,B為焦點的雙曲線上或線段AB的垂直平分線上
C、以AB為直徑的圓上或線段AB的垂直平分線上
D、以上說法均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為△ABC的外心(三角形外接圓的圓心).若
AO
=
1
3
AB
+
1
3
AC
,則∠BAC的度數(shù)為(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α=π2,則α的終邊落在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有2f(x)+xf′(x)>x2,則不等式(x+2014)2f(x+2014)-4f(-2)>0的解集為( 。
A、(-∞,-2012)
B、(-2012,0)
C、(-∞,-2016)
D、(-2016,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班有50名學(xué)生,其中正、副班長各1人,現(xiàn)要選派5人參加一項社區(qū)活動,要求正、副班長至少1人參加,問共有多少種選派方法?下面是學(xué)生提供的四個計算式,其中錯誤的是( 。
A、
C
1
2
C
4
49
B、
C
5
50
-
C
5
48
C、
C
1
2
C
4
49
-
C
2
2
C
3
48
D、
C
1
2
C
4
48
+
C
2
2
C
3
48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C所對的邊分別為a,b,c,ac=3,S△ABC=
3
3
4

(Ⅰ)求B;
(Ⅱ)若b=
2
,求△ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案