直三棱柱ABC-A
1B
1C
1中,若
=
,
=
,
=
,則
=( 。
分析:將向量
分解成
+
,然后將利用相等向量和向量的三角形法則將
與
化成用
、
、
表示即可.
解答:解:
=
+
=-
+
-
=-
+
-
故選D.
點(diǎn)評(píng):本題主要考查了空間向量的加減法,解題的關(guān)鍵是利用向量的三角形法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
直三棱柱ABC-A
1B
1C
1中,AC=BC=BB
1=1,AB
1=
(1)求證:平面AB
1C⊥平面B
1CB;
(2)求三棱錐A
1-AB
1C的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
如圖,在直三棱柱ABC-A
1B
1C
1中,∠BAC=90°,AB=BB
1=a,直線B
1C與平面ABC成30°角.
(1)求證:平面B
1AC⊥平面ABB
1A
1;
(2)求C
1到平面B
1AC的距離;
(3)求三棱錐A
1-AB
1C的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
如圖,在直三棱柱ABC-A
1 B
1 C
1中,AA
1=1,AC⊥BC,AC=BC=2,則BC
1與平面AB B
1 A
1所成角的正弦值是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:單選題
如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是
- A.
- B.
- C.
- D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:2011-2012學(xué)年重慶八中高三(下)第二次月考數(shù)學(xué)試卷(理科)(解析版)
題型:選擇題
如圖,在直三棱柱ABC-A
1 B
1 C
1中,AA
1=1,AC⊥BC,AC=BC=2,則BC
1與平面AB B
1 A
1所成角的正弦值是( )
A.
B.
C.
D.
查看答案和解析>>