分析 (Ⅰ)將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求出ω,最后將內(nèi)層函數(shù)看作整體,當$x∈[0,\frac{π}{2}]$時,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的取值最大和最小值,即得到f(x)的值域.
(Ⅱ)利用f(C)=0求出角C的大。诶谜叶ɡ砜汕骲.
解答 解:(Ⅰ)函數(shù)f(x)=cos2ωx-2cos2(ωx+$\frac{π}{4}$)(ω>0)的化簡可得:$f(x)=cos2ωx-[1+cos(2ωx+\frac{π}{2})]$=cos2ωx+sin2ωx-1=$\sqrt{2}sin(2ωx+\frac{π}{4})-1$.
∵函數(shù)f(x)的最小正周期T=π.
由$T=\frac{2π}{2ω}=π$,得ω=1,
∴$f(x)=\sqrt{2}sin(2x+\frac{π}{4})-1$,
當$x∈[0,\frac{π}{2}]$時,
$2x+\frac{π}{4}∈[\frac{π}{4},\frac{5π}{4}]$,
那么:$sin(2x+\frac{π}{4})∈[-\frac{{\sqrt{2}}}{2},1]$,
∴函數(shù)f(x)的值域為$[-2,\sqrt{2}-1]$.
(Ⅱ)由(Ⅰ)可得$f(x)=\sqrt{2}sin(2x+\frac{π}{4})-1$,
∵$f(C)=\sqrt{2}sin(2C+\frac{π}{4})-1=0$,
化簡得:$sin(2C+\frac{π}{4})=\frac{{\sqrt{2}}}{2}$,
又∵0<C<π,
∴$2C+\frac{π}{4}=\frac{3π}{4}$,
∴$C=\frac{π}{4}$
∵$acosB+bcosA=\frac{1}{2}{c^2}$,
由正弦定理,得$sinAcosB+sinBcosA=\frac{1}{2}csinC$;
∴$sin(A+B)=\frac{1}{2}csinC$,即$sinC=\frac{1}{2}csinC$;
又sinC>0,∴c=2.
∴$sinA=\frac{asinC}{c}=\frac{{\sqrt{2}×\frac{{\sqrt{2}}}{2}}}{2}=\frac{1}{2}$
∵a<c,∴$0<A<\frac{π}{4}$,$A=\frac{π}{6}$
∴$b=\frac{asinB}{sinA}=\frac{{\sqrt{2}sin(\frac{π}{4}+\frac{π}{6})}}{{\frac{1}{2}}}=1+\sqrt{3}$.
點評 本題考查了三角函數(shù)的化簡能力以及性質(zhì)的運用計算能力,同時考查了正弦定理的運用能力.屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | a | 0.16 |
70.5~80.5 | 10 | b |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | c | d |
合計 | 50 | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2,3,4} | B. | {2,3,4} | C. | {3,4} | D. | {x|1<x≤4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{π}{2}$,0) | B. | ($\frac{π}{4}$,0) | C. | ($\frac{π}{9}$,0) | D. | ($\frac{π}{16}$,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 一定存在正數(shù)d,使得b-a<c-d | B. | 一定存在正數(shù)d,使得a-c<b-d | ||
C. | 對任意的正數(shù)d,有$\frac{1}{a}$-$\frac{1}$<$\frac{1}qz1buj9$-$\frac{1}{c}$ | D. | 對任意的正數(shù)d,有ad>bd>cd |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com