已知函數(shù)f(x)=x2-2ax+3,x∈[0,2].
①當(dāng)a≥2時,f(x)在[0,2]上的最小值為-13,求a的值;
②求f(x)在[0,2]上的最小值g(a);
③求②中g(shù)(a)的最大值.
分析:利用二次函數(shù)的圖象性質(zhì)分別研究函數(shù)的最值即可.
解答:解:f(x)=x2-2ax+3=(x-a)2+3-a2,函數(shù)的對稱軸為x=a,拋物線開口向上.
①當(dāng)a≥2時,[0,2]⊆(-∞,a],
∴f(x)在[0,2]上是減函數(shù),
∴f(x)min=f(2)=7-4a=-13,
∴a=5.
②當(dāng)a≥2時f(x)在[0,2]上是減函數(shù),
∴g(a)=f(x)min=f(2)=7-4a
當(dāng)a≤0時f(x)在[0,2]上是增函數(shù),
∴g(a)=f(x)min=f(0)=3,
當(dāng)0<a<2時,f(x)在[0,a]上是減函數(shù),在[a,2]上是增函數(shù).
g(a)=f(x)min=f(a)=3-a2,
g(a)=
7-4a(a≥2)
3-a2(0<a<2)
3(a≤0)

③由②知∴g(a)=
7-4a(a≥2)
3-a2(0<a<2)
3(a≤0)

當(dāng)a≥2時,7-4a≤-1,
當(dāng)0<a<2時,-1<3-a2<3,
當(dāng)a≤0時,g(a)=3,
∴g(a)max=3(a≤0)
點評:本題主要考查二次函數(shù)的圖象和性質(zhì),利用配方法得到函數(shù)對稱軸是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案