數(shù)列{an}中,a1=3,對(duì)于任意大于1的正整數(shù)n,點(diǎn)(
an
an-1
)都在直線x-y-
3
=0上,則
lim
n→∞
an
(n+1)2
=
 
考點(diǎn):數(shù)列的極限
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:根據(jù)一個(gè)點(diǎn)在一條直線上,點(diǎn)的坐標(biāo)滿足直線的方程,代入整理成一個(gè)等差數(shù)列,看出首項(xiàng)和公差,寫(xiě)出數(shù)列的通項(xiàng)公式,兩邊開(kāi)方,求出an=3n2,即可求出
lim
n→∞
an
(n+1)2
解答: 解:∵點(diǎn)(
an
an-1
)都在直線x-y-
3
=0上,
an
-
an-1
=
3

又a1=3,
∴{
an
}是以
3
為首項(xiàng),
3
為公差的等差數(shù)列,
an
=
3
n,
即an=3n2,
lim
n→∞
an
(n+1)2
=
lim
n→∞
3n2
(n+1)2
=
lim
n→∞
3
1+
2
n
+
1
n2
=3
故答案為:3.
點(diǎn)評(píng):本題考查等差數(shù)列,考查等差數(shù)列的性質(zhì),考查等差數(shù)列的通項(xiàng),考查極限知識(shí),是一個(gè)簡(jiǎn)單的綜合題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓T:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)P(2,
2
),一個(gè)焦點(diǎn)F的坐標(biāo)是(2,0).
(Ⅰ)求橢圓T的方程;
(Ⅱ)設(shè)直線l:y=kx+m與橢圓T交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),橢圓T的離心率為e,若kOA•kOB=e2-1.
①求
OA
OB
的取值范圍;
②求證:△AOB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin2x+2cosx在區(qū)間[-
3
,θ]上的最小值為-
1
4
,則θ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=lgx在x=1處的切線方程為( 。
A、y=(lge)(x-1)
B、y=(ln10)(x-1)
C、y=x
D、y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三角形ABC中,b=5,c=3且滿足sin22A-sin2AsinA+cos2A=1,求cos(B-C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意n∈N*,滿足Sn=2n+1-2,數(shù)列bn=log2an
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列cn=
1
bnbn+1
,求數(shù)列{cn}的前項(xiàng)和 Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程
x2-1
=2x+m有實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是( 。
A、[-
3
,0})∪[2,+∞)
B、[-
3
,0)∪(0,
3
]
C、(-∞,-
3
]∪[2,+∞)
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3,若不等式f(m)-f(ex+e-x)≥0(e為自然對(duì)數(shù)的底數(shù))對(duì)任意x∈R恒成立,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,2]
B、[2,+∞)
C、(-∞,0]
D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司共有工作人員200人,其中職員160人,中級(jí)管理人員30人,高級(jí)管理人員10人,現(xiàn)要從中抽取20個(gè)人進(jìn)行身體健康檢查,如果采取分層抽樣的方法,則職員、中級(jí)管理人員和高級(jí)管理人員各應(yīng)抽取的人數(shù)為( 。
A、16,3,1
B、16,2,2
C、8,15,7
D、12,3,5

查看答案和解析>>

同步練習(xí)冊(cè)答案