18.某幾何體三視圖如圖所示,則該幾何體的體積等于4.

分析 由三視圖可知:該幾何體為四棱錐P-ABCD,其中:側(cè)面PAB⊥底面BACD,底面為矩形ABCD.

解答 解:由三視圖可知:該幾何體為四棱錐P-ABCD,
其中:側(cè)面PAB⊥底面BACD,底面為矩形ABCD.
∴該幾何體的體積V=$\frac{1}{3}×2×3×2$=4,
故答案為:4.

點(diǎn)評(píng) 本題考查了四棱錐的三視圖及其體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=f(x)周期函數(shù)且T=4,當(dāng)x∈[-4,0)時(shí),f(x)=x2-1,則f(2015)=( 。
A.8B.-1C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=3sin(2x-$\frac{π}{3}$)的圖象作以下哪個(gè)平移得到函數(shù)y=3sin2x的圖象( 。
A.向左平移$\frac{π}{3}$B.向左平移$\frac{π}{6}$C.向右平移$\frac{π}{3}$D.向右平移$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.學(xué)校擬進(jìn)行一次活動(dòng),對(duì)此,新聞媒體進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”“保留”和“不支持”態(tài)度的人數(shù)如表所示
支持保留不支持
20歲以下800450200
20歲以上(含20歲)100150300
(Ⅰ)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個(gè)人,已知從持“不支持”態(tài)度的人中抽取了25人,求n的值;
(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取5人看成一個(gè)總體,從這5人中任意選取2人,求至少有1人年齡在20歲以上的概率;
(Ⅲ)在接受調(diào)查的人中,有8人給這項(xiàng)活動(dòng)打出的分?jǐn)?shù)如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8個(gè)人打出的分?jǐn)?shù)看作一個(gè)總體,從中任取1個(gè)數(shù),求該數(shù)與總體平均數(shù)之差的絕對(duì)值超過0.6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.復(fù)數(shù)z=2x+(x2-1)i,其中x∈R.
(1)若z是實(shí)數(shù),求x的值;
(2)求證:|z|的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若純虛數(shù)Z滿足(1-i)z=1+ai,則實(shí)數(shù)a等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.投擲一枚均勻硬幣和一枚均勻骰子各一次,記“硬幣反面向上”為事件A,“骰子向上的點(diǎn)數(shù)是6”為事件B,則事件A,B中至少有一件發(fā)生的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD中,四邊形ABCD為矩形,PD⊥平面ABCD,E,F(xiàn)分別為PC和BD的中點(diǎn).

(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求證:CD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x|x-a|+2x.
(1)當(dāng)a=0時(shí),若對(duì)任意的m∈[-2,2],不等式f(mx-2)+f(x)<0恒成立,求實(shí)數(shù)x的取值范圍;
(2)若存在a∈[-2,4],使得函數(shù)y=f(x)-at有三個(gè)不同的零點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案