已知x>-1,求(x)=x+的最小值.

答案:
解析:

  解:∵x>-1,∴x+1>0.

  ∴f(x)=x+=(x+1)+-1≥2-1=1.

  當(dāng)且僅當(dāng)=x+1,

  即x=0時(shí),等號(hào)成立.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
(1)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a=4時(shí),是否存在實(shí)數(shù)m,使得直線6x+y+m=0恰為曲線y=f(x)的切線?若存在,求出m的值;若不存在,說(shuō)明理由;
(3)設(shè)定義在D上的函數(shù)y=h(x)的圖象在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若
h(x)-g(x)x-x0
>0
在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”.當(dāng)a=4,試問(wèn)y=f(x)是否存在“類對(duì)稱點(diǎn)”?若存在,請(qǐng)至少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•嘉定區(qū)二模)如圖,已知點(diǎn)F(1,0),點(diǎn)M在x軸上,點(diǎn)N在y軸上,且
NM
NF
=0,點(diǎn)R滿足
NM
+
NR
=
0

(1)求動(dòng)點(diǎn)R的軌跡C的方程;
(2)過(guò)B(4,0)作直線l交軌跡C于P、Q兩點(diǎn),求
OP
OQ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•惠州模擬)設(shè)n為正整數(shù),規(guī)定:fn(x)=
f{f[…f(x)]}
n個(gè)f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2

(1)解不等式f(x)≤x;
(2)設(shè)集合A={0,1,2},對(duì)任意x∈A,證明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含8個(gè)元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
(1)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a=4時(shí),是否存在實(shí)數(shù)m,使得直線6x+y+m=0恰為曲線y=f(x)的切線?若存在,求出m的值;若不存在,說(shuō)明理由;
(3)設(shè)定義在D上的函數(shù)y=h(x)的圖象在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若
h(x)-g(x)
x-x0
>0
在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”.當(dāng)a=4,試問(wèn)y=f(x)是否存在“類對(duì)稱點(diǎn)”?若存在,請(qǐng)至少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案