15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x∈[-1,0]}\\{{x}^{2}+1,x∈(0,1]}\end{array}\right.$,則函數(shù)f(x)的圖象是(  )
A.B.C.D.

分析 根基函數(shù)的單調(diào)性與特殊值即可判斷.

解答 解:當x∈[-1,0]時,f(x)一次函數(shù),且為增函數(shù),且f(-1)=0,f(0)=1,
當x∈(0,]時,f(x)為二次函數(shù)且為增函數(shù),且f(1)=2.
故選A.

點評 本題考查了基本初等函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.若i是虛數(shù)單位,復數(shù)z=$\frac{i}{2+i}$的虛部為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=-x2+2ax+1-a.
(1)若a=1,求函數(shù)f(x)的最大值;
(2)若函數(shù)f(x)在區(qū)間[0,1]上的最大值是2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.定義運算a*b為執(zhí)行如圖所示的程序框圖輸出的S值,則(sin$\frac{π}{3}}$)*(cos$\frac{π}{3}}$)的值為( 。
A.$\frac{{2-\sqrt{3}}}{4}$B.$\frac{{2+\sqrt{3}}}{4}$C.$\frac{1}{4}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知程序框圖如圖所示,其功能是求一個數(shù)列{an}的前10項和,則數(shù)列{an}的一個通項公式an=$\frac{1}{2n}$,數(shù)列{an•an+1}的前2016項和為$\frac{504}{2017}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在200與300之間,所有為7的整數(shù)倍的數(shù)之和為( 。
A.3727.5B.6958C.3528D.3479

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如果某個點是一個指數(shù)函數(shù)和一個對數(shù)函數(shù)的圖象的交點,那么稱這個點為“好點”,下列四個點P1(2,$\frac{1}{4}$),P2(4,1),P3(3,3),P4(1,5)中,是“好點”的為( 。
A.P1、P3B.P1、P2C.P3、P4D.P1、P2、P4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.△OAB的直觀圖△O′A′B′如圖所示,且O′A′=O′B′=2,則△OAB的面積為(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4t+5}\\{y=3t-1}\end{array}\right.$(t為參數(shù)),在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立坐標系,圓N的方程為ρ2-6ρsinθ=-8.
(1)求圓N的直角坐標方程;
(2)判斷直線l與圓N的位置關(guān)系.

查看答案和解析>>

同步練習冊答案