【題目】設函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導函數(shù).
(1)g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+ , 求g1(x),g2(x),g3(x),并猜想gn(x)的表達式(不必證明);
(2)若f(x)≥ag(x)恒成立,求實數(shù)a的取值范圍;
(3)設n∈N+ , 比較g(1)+g(2)+…+g(n)與n﹣f(n)的大小,并用數(shù)學歸納法加以證明.
【答案】
(1)解:f′(x)= ,g(x)= ,
∴
猜想:gn(x)= (x≥0)
(2)解:令h(x)=f(x)﹣ag(x)=ln(1+x)﹣ (x≥0),
∵f(x)≥ag(x)恒成立,∴hmin(x)≥0.
h′(x)= ﹣ = ,
令h′(x)>0得x>a﹣1,
當a﹣1≤0即a≤1時,h(x)在[0,+∞)上單調遞增,
∴hmin(x)=h(0)=0,符合題意;
當a﹣1>0即a>1時,h(x)在[0,a﹣1)上單調遞減,在[a﹣1,+∞)上單調遞增,
∴hmin(x)=h(a﹣1)=lna﹣a+1,
令φ(a)=lna﹣a+1(a>1),則φ′(a)= ﹣1<0,
∴φ(a)在(1,+∞)上單調遞減,
∴φ(a)<φ(1)=0,
即hmin(x)<0,不符合題意.
綜上,a的取值范圍是(﹣∞,1]
(3)解:g(1)= ,1﹣f(1)=1﹣ln2,
∵ln2>ln = ,∴1﹣ln2< ,即g(1)>1﹣f(1),
猜想:
證明如下:
(i)當n=1時,顯然猜想成立;
(ii) 假設n=k時, 成立,
當n=k+1時,左邊=
欲證左邊>右邊,
即證: ,
即證:
由(2)中的結論,令a=1得不等式:
所以 成立
即n=k+1時,猜想成立.
由(i) (ii) 對一切n∈N+,不等式 成立
【解析】(1)求出g(x)的解析式,依次計算即可得出猜想;(2)令h(x)=f(x)﹣ag(x)=ln(1+x)﹣ (x≥0),對a進行討論,求出h(x)的最小值,令hmin(x)≥0恒成立即可;(3)比較g(1)與1﹣f(1)猜測大小關系,利用(2)的結論進行證明.
【考點精析】掌握歸納推理和數(shù)學歸納法的定義是解答本題的根本,需要知道根據(jù)一類事物的部分對象具有某種性質,退出這類事物的所有對象都具有這種性質的推理,叫做歸納推理;數(shù)學歸納法是證明關于正整數(shù)n的命題的一種方法.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:kx﹣y+1+2k=0(k∈R) (Ⅰ)證明直線l經過定點并求此點的坐標;
(Ⅱ)若直線l不經過第四象限,求k的取值范圍;
(Ⅲ)若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設△AOB的面積為S,求S的最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩組各有三名同學,他們在一次測驗中的成績的莖葉圖如圖所示,如果分別從甲、乙兩組中各隨機挑選一名同學,則這兩名同學成績相同的概率是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ax﹣lnx(x∈(0,e]),其中e是自然常數(shù),a∈R.
(Ⅰ)當a=1時,求f(x)的單調區(qū)間和極值;
(Ⅱ)是否存在實數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}
(1)若a= ,求A∩B.
(2)若A∩B=,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若a,b∈[﹣1,1],a+b≠0時,有 成立.
(1)判斷f(x)在[﹣1,1]上的單調性,并證明它;
(2)解不等式f(x2)<f(2x);
(3)若f(x)≤m2﹣2am+1對所有的a∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的三內角A、B、C的對邊分別是a、b、c,且b(sinB﹣sinC)+(c﹣a)(sinA+sinC)=0 (Ⅰ)求角A的大。
(Ⅱ)若a= ,sinC= sinB,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網(wǎng)絡進行了問卷調查,并從參與調查的網(wǎng)友中抽取了200人進行抽樣分析,得到表格:(單位:人)
經常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?
(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經常使用、偶爾或不用共享單車的人數(shù);
(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:sin230°+sin290°+sin2150°= ;
sin25°+sin265°+sin2125°= ;
sin212°+sin272°+sin2132°= ;
通過觀察上述兩等式的規(guī)律,請你寫出一般性的命題,并給予的證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com