20.已知O是坐標原點,點A(-$\frac{1}{3}$,2),若點M(x,y)為平面區(qū)域$\left\{\begin{array}{l}{y≤2x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$上的一個動點,則|$\overrightarrow{OA}$+$\overrightarrow{OM}$|的最小值是1.

分析 由題意作出可行域,由向量的坐標加法運算求得$\overrightarrow{OA}$+$\overrightarrow{OM}$的坐標,把|$\overrightarrow{OA}$+$\overrightarrow{OM}$|轉(zhuǎn)化為可行域內(nèi)的點M(x,y)到定點N($\frac{1}{3}$,-2)的距離,數(shù)形結(jié)合可得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{y≤2x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$作平面區(qū)域如圖,

∵A(-$\frac{1}{3}$,2),M(x,y),
∴$\overrightarrow{OA}$+$\overrightarrow{OM}$=(-$\frac{1}{3}$,2)+(x,y)=(x-$\frac{1}{3}$,y+2),
則|$\overrightarrow{OA}$+$\overrightarrow{OM}$|=$\sqrt{(x-\frac{1}{3})^{2}+(y+2)^{2}}$.
要使|$\overrightarrow{OA}$+$\overrightarrow{OM}$|最小,則可行域內(nèi)的點M(x,y)到定點N($\frac{1}{3}$,-2)的距離最。
由圖可知,當N到直線BC的距離最小,所求最小值是1.
故答案為:1.

點評 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合、轉(zhuǎn)化與化歸等解題思想方法,考查了向量模的求法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知數(shù)列{an}中,a1=1,an=an-1+$\frac{1}{n•(n-1)}$,(n≥2),則a5=$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設函數(shù)f(x)=(x-a)6,若$\frac{f′(0)}{f(0)}$=-3,則f(x)的展開式中的x4系數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.C${\;}_{3n}^{38-n}$+C${\;}_{n+21}^{3n}$=( 。
A.466B.478C.512D.526

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=1-2sin2x+2cosx的最大值和最小值分別為(  )
A.-1,1B.$-\frac{3}{2},-1$C.$-\frac{3}{2},3$D.$-2,\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=xlnx,g(x)=$\frac{1}{8}$x2-x.
(1)求f(x)的單調(diào)區(qū)間和極值點;
(2)是否存在實數(shù)m,使得函數(shù)h(x)=$\frac{3f(x)}{4x}$+m+g(x)有三個不同的零點?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F恰好是圓F:x2+y2-4x+3=0的圓心,且點F到雙曲線C的一條漸近線的距離為1,則雙曲線C的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若tanα=-$\frac{1}{3}$,則sin2α=( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖所示,三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,PA=AC=$\sqrt{2}$,則三棱錐P-ABC外接球的體積是( 。
A.$\frac{{\sqrt{2}π}}{3}$B.$\frac{8π}{3}$C.$\frac{4π}{3}$D.

查看答案和解析>>

同步練習冊答案