設(shè)a=(cos,sin),b=(cos,sin),且a與b具有關(guān)系|ka+b|=|a-kb|(k>0).

(1)用k表示a·b;

(2)求a·b的最小值,并求此時(shí)a與b的夾角.

(1)a·b=(k>0)(2)a·b的最小值為,此時(shí)向量a與b的夾角為


解析:

(1)∵|ka+b|=|a-kb|,

∴(ka+b)2=3(a-kb)2,且|a|=|b|=1,

即k2+1+2ka·b=3(1+k2-2ka·b),

∴4ka·b=k2+1.∴a·b=(k>0).

(2)由(1)知:∵k>0

∴a·b= =.

∴a·b的最小值為(當(dāng)且僅當(dāng)k=1時(shí)等號(hào)成立)

設(shè)a、b的夾角為,此時(shí)cos==.

0≤,∴=.

故a·b的最小值為,此時(shí)向量a與b的夾角為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(cosα,sinα)
b
=(cosβ,sinβ)

(1)若
a
-
b
=(-
2
3
1
3
)
,θ為
a
b
的夾角,求cosθ.
(2)若
a
b
夾角為60°,那么t為何值時(shí)|
a
-t
b
|
的值最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(cosθ,sinθ),
b
=(3,4),則
a
b
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=(cos,sin),b=(cos,sin),且a與b具有關(guān)系|ka+b|=|a-kb|(k>0).

(1)用k表示a·b;

(2)求a·b的最小值,并求此時(shí)a與b的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=(cos(x-),sin(x-)),b=(,-).

(1)設(shè)f(x)=a·b,試在如圖的坐標(biāo)系中畫(huà)出函數(shù)y=f(x)在[-π,π]上的簡(jiǎn)圖;

(2)設(shè)方程f(x)=a在[0,π]上的三正根依次成等比數(shù)列,試求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案