(2012•上海)在△ABC中,若sin2A+sin2B<sin2C,則△ABC的形狀是( 。
分析:由sin2A+sin2B<sin2C,結(jié)合正弦定理可得,a2+b2<c2,由余弦定理可得CosC=
a2+b2-c2
2ab
可判斷C的取值范圍
解答:解:∵sin2A+sin2B<sin2C,
由正弦定理可得,a2+b2<c2
由余弦定理可得CosC=
a2+b2-c2
2ab
<0

π
2
<C<π

∴△ABC是鈍角三角形
故選C
點(diǎn)評:本題主要考查了正弦定理、余弦定理的綜合應(yīng)用在三角形的形狀判斷中的應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)在平行四邊形ABCD中,∠A=
π
3
,邊AB、AD的長分別為2、1,若M、N分別是邊BC、CD上的點(diǎn),且滿足
|BM|
|BC|
=
|CN|
|CD|
,則
AM
AN
的取值范圍是
[2,5]
[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1.
(1)過C1的左頂點(diǎn)引C1的一條漸進(jìn)線的平行線,求該直線與另一條漸進(jìn)線及x軸圍成的三角形的面積;
(2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ;
(3)設(shè)橢圓C2:4x2+y2=1,若M、N分別是C1、C2上的動點(diǎn),且OM⊥ON,求證:O到直線MN的距離是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)在矩形ABCD中,邊AB、AD的長分別為2、1,若M、N分別是邊BC、CD上的點(diǎn),且滿足
|
BM
|
|
BC
|
=
|
CN
|
|
CD
|
,則
AM
AN
的取值范圍是
[1,4]
[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)在平面直角坐標(biāo)系xOy中,已知雙曲線C:2x2-y2=1.
(1)設(shè)F是C的左焦點(diǎn),M是C右支上一點(diǎn),若|MF|=2
2
,求點(diǎn)M的坐標(biāo);
(2)過C的左焦點(diǎn)作C的兩條漸近線的平行線,求這兩組平行線圍成的平行四邊形的面積;
(3)設(shè)斜率為k(|k|<
2
)的直線l交C于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ.

查看答案和解析>>

同步練習(xí)冊答案