設(shè)f(x)=x2+ax+b,A={x|f(x)=x}={a},M={(a,b)},M=
 
分析:根據(jù)集合A有且只有一個(gè)元素a可知x2+ax+b=x有且只有一個(gè)根x=a,利用根與系數(shù)的關(guān)系建立等式關(guān)系,求出a和b即可求得集合M.
解答:解:∵A={x|y=x}={a},
∴y=x2+ax+b=x有且只有一個(gè)根x=a
1-a=2a
b=a2

解得:a=
1
3
,b=
1
9

∴M={(a,b)}={(
1
3
,
1
9
)}
故答案為:{(
1
3
,
1
9
)}
點(diǎn)評(píng):本題主要考查了集合的確定性、互異性、無(wú)序性,以及一元二次方程只有一解的問(wèn)題,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,函數(shù)f(x)=x2+a|lnx-1|.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在x=1處的切線方程;
(2)當(dāng)x∈[1,+∞)時(shí),求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,函數(shù)f(x)=x2+a|lnx-1|
(1)當(dāng)a=1時(shí),求曲線y=f(x)在x=1處的切線方程;
(2)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)性;
(3)當(dāng)x∈[1,+∞)時(shí),求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、設(shè)f(x)和g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若對(duì)任意的x∈[a,b],都有|f(x)-g(x)|≤1,則稱f(x)和g(x)在[a,b]上是“密切函數(shù)”,[a,b]稱為“密切區(qū)間”,設(shè)f(x)=x2-3x+4與g(x)=2x-3在[a,b]上是“密切函數(shù)”,則它的“密切區(qū)間”可以是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x2+a.記f1(x)=f(x),fn(x)=f(fn-1(x)),n=1,2,3,…,集合M={a∈R|對(duì)所有正整數(shù)n,
.
fn(0) 
  
.
≤2}.
證明:M=[-2,
1
4
].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)高校自主招生數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

設(shè)f(x)=x2+a.記f1(x)=f(x),fn(x)=f(fn-1(x)),n=1,2,3,…,集合M={a∈R|對(duì)所有正整數(shù)n,≤2}.
證明:M=[-2,].

查看答案和解析>>

同步練習(xí)冊(cè)答案