如圖,已知三棱錐中,,,中點, 中點,且為正三角形。

(Ⅰ)求證://平面;
(Ⅱ)求證:平面⊥平面;
(III)若,,求三棱錐的體積.

(Ⅰ)、(Ⅱ)詳見解析(III).

解析試題分析:(Ⅰ)利用中位線性質(zhì)得到線線平行,根據(jù)線面平行的判定判定直線與平面平行;(Ⅱ)利用正三角形中點得到線線垂直,根據(jù)平行推得線線垂直,利用直線與平面垂直判定面面垂直;(Ⅲ)利用三棱錐的體積公式計算體積.
試題解析:(Ⅰ)∵M為AB中點,D為PB中點,
∴MD//AP,  又∴MD平面ABC
∴DM//平面APC.                              3分
(Ⅱ)∵△PMB為正三角形,且D為PB中點.∴MD⊥PB.
又由(1)∴知MD//AP, ∴AP⊥PB.
又已知AP⊥PC  ∴AP⊥平面PBC,
∴AP⊥BC,  又∵AC⊥BC.                       7分
∴BC⊥平面APC,  ∴平面ABC⊥平面PAC,
(Ⅲ)∵ AB=20
∴ MB=10   ∴PB=10
又 BC=4,.
.
又MD.
∴VD-BCM = VM-BCD =.      12分
考點:直線與平面平行的判定;平面與平面垂直的判定,三棱錐體積計算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知半徑為的球內(nèi)有一個內(nèi)接正方體(即正方體的頂點都在球面上).
(1)求此球的體積;
(2)求此球的內(nèi)接正方體的體積;
(3)求此球的表面積與其內(nèi)接正方體的全面積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在三棱錐中,是邊長為的正三角形,平面⊥平面,,、分別為的中點.

(Ⅰ)證明:;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

正三棱臺中,分別是上、下底面的中心.已知,
 
(1)求正三棱臺的體積;
(2)求正三棱臺的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(10分)一個正三棱柱的三視圖如圖所示,求這個正三棱柱的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖所示,M、N分別為A1B、B1C1的中點.

(1)求證:MN//平面ACC1A1;
(2)求證:MN^平面A1BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

四棱錐中,底面為平行四邊形,側(cè)面底面 的中點,已知,
(Ⅰ)求證:
(Ⅱ)在上求一點,使平面;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知一個圓與正方形的周長都為1,證明:圓的面積比正方形的面積大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
如圖,在直三棱柱中,,.棱上有兩個動點E,F(xiàn),且EF =" a" (a為常數(shù)).

(Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;      
(Ⅱ)判斷三棱錐B—CEF的體積是否為定值.若是定值,求出這個三棱錐的體積;若不是定值,說明理由.

查看答案和解析>>

同步練習冊答案