解答:
解:(1)f′(x)=a
xlna+2x-lna=2x+(a
x-1)lna,
由于a>1,故當(dāng)x∈(0,+∞)時(shí),lna>0,a
x-1>0,
∴f′(x)>0,
故函數(shù)f(x)在(0,+∞)上單調(diào)遞增.
(2)f(x)=e
x+x
2-x-4,
∴f′(x)=e
x+2x-1,∴f′(0)=0,
當(dāng)x>0時(shí),e
x>1,∴f′(x)>0,故f(x)是(0,+∞)上的增函數(shù);
同理,f(x)是(-∞,0)上的減函數(shù).
f(0)=-3<0,f(1)=e-4<0,f(2)=e
2-2>0,
當(dāng)x>2,f(x)>0,
故當(dāng)x>0時(shí),函數(shù)f(x)的零點(diǎn)在[1,2]內(nèi),
∴k=1滿(mǎn)足條件;
f(0)=-3<0,f(-1)=-2<0,f(-2)=+2>0,
當(dāng)x<-2,f(x)>0,
故當(dāng)x<0時(shí),函數(shù)f(x)的零點(diǎn)在[-2,-1]內(nèi),
∴k=-2滿(mǎn)足條件.
綜上,k=1或-2.
(3)f(x)=a
x+x
2-xlna,
∵存在x
1,x
2∈[-1,1],使得|f(x
1)-f(x
2)|≥e-1,
∴當(dāng)x∈[-1,1]時(shí),|(f(x))
max-(f(x))
min|=(f(x))
max-(f(x))
min≥e-1,
f'(x)=a
xlna+2x-lna=2x+(a
x-1)lna,
記h(x)=2x+(a
x-1)lna
h′(x)=a
xln
2a+2>0,∴h′(x)是R上的增函數(shù),
故f′(x)=0有唯一解x=0.
則x,f(x),f′(x)的變化情況如下表所示:
x | (-∞,0) | 0 | (0,+∞) |
f′(x) | - | 0 | + |
f(x) | 遞減 | 極小值 | 遞增 |
故f(x)在[-1,0]上遞減,在[0,1]上遞增,
所以當(dāng)x∈[-1,1]時(shí)f
min(x)=f(0)=1,f
max(x)=max{f(1),f(-1)},
而f(1)-f(-1)=(a+1-lna)-(
+1+lna)=a-
-2lna,
記g(t)=t-
-2lnt,t>0,則g′(t)=1+
-=(-1)2≥0(當(dāng)t=1時(shí)取等號(hào)),
所以g(t)=t-
-2lnt在t∈(0,+∞)上單調(diào)遞增,而g(1)=0,
所以當(dāng)t>1時(shí),g(t)>0;當(dāng)0<t<1時(shí),g(t)<0,
也就是當(dāng)a>1時(shí),f(1)>f(-1);當(dāng)0<a<1時(shí),f(1)<f(-1),
①當(dāng)a>1時(shí),由f(1)-f(0)≥e-1,即a-lna≥e-1,
∵a-lna是關(guān)于a>1的增函數(shù),
∴a-lnaa-lna≥e-1,解得a≥e;
②當(dāng)0<a<1時(shí),由f(1)-f(0)≥e-1,則
+lna≥e-1,同理能得出0<a≤
.
綜上知,所求a的取值范圍為a∈(0,
]∪[e,+∞).