分析:(Ⅰ)由數(shù)列{a
n}的前n項(xiàng)和為
Sn=2n2,能求出a
n=4n-2.由{b
n}為等比數(shù)列,且
b1=a1,b4=,能求出b
n.
(Ⅱ)由a
n=4n-2,b
n=2
3-2n,知
cn==
=
.故數(shù)列{c
n}的前n項(xiàng)和T
n=1+
+
+…+
+
,由此利用錯(cuò)位相減法能求出數(shù)列{c
n}的前n項(xiàng)和T
n.
解答:解:(Ⅰ)∵數(shù)列{a
n}的前n項(xiàng)和為
Sn=2n2,
∴a
1=S
1=2,
a
n=S
n-S
n-1=2n
2-2(n-1)
2=4n-2.
當(dāng)n=1時(shí),4n-2=2=a
1,
∴a
n=4n-2.
∵{b
n}為等比數(shù)列,且
b1=a1,b4=,
∴b
1=2,
b4=2q3=,
解得q=
.
∴b
n=2×(
)
n-1=2
3-2n.
(Ⅱ)∵a
n=4n-2,b
n=2
3-2n,
∴
cn==
=
.
∴數(shù)列{c
n}的前n項(xiàng)和T
n=1+
+
+…+
+
,①
2
2S
n=
+
+
+…+
+
,②
①-②,-3S
n=1+(2
3+2
5+2
7+…+2
2n-1)-
=1+
-
=1+
(4n-1-1)-(2n-1)4n ,
∴S
n=-
+
(1-4
n-1)+
•4n.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.