分析 (1)取A1C的中點(diǎn)H,連結(jié)HE,HF,推導(dǎo)出四邊形EBFH為平行四邊形,由此能證明BF∥平面A1EC.
(2)設(shè)AB中點(diǎn)為G,連結(jié)EG,CG,推導(dǎo)出∠GEC為二面角C-EA1-A的平面角,由此能求出二面角C-EA1-A的大小.
解答 證明:(1)取A1C的中點(diǎn)H,連結(jié)HE,HF,
則HF∥A1A,HF=$\frac{1}{2}$A1A,
∴EB∥HF,且EB=HF,
∴四邊形EBFH為平行四邊形,
∴BF∥EH,且EH?平面A1EC,BF?平面A1EC,
∴BF∥平面A1EC.
解:(2)設(shè)AB中點(diǎn)為G,連結(jié)EG,CG,
∵CG⊥AB,CG⊥AA1,AB∩AA1=A,
∴CG⊥平面BAA1B1,∴CG⊥EA1,且EC=A1E=$\sqrt{6}$,A1C=2$\sqrt{3}$,
∴${A}_{1}{E}^{2}$+EC2=${A}_{1}{C}^{2}$,∴EC⊥EA1,
∵CG∩EC=C,∴EA1⊥平面EGC,∴EG⊥EA1,
∴∠GEC為二面角C-EA1-A的平面角,
且EG=GC=$\sqrt{3}$,EC=$\sqrt{6}$,
∴∠GEC=45°.
∴二面角C-EA1-A的大小為45°.
點(diǎn)評(píng) 本題考查線面平行的證明,考查二面角的大小的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年內(nèi)蒙古高二理上月考一數(shù)學(xué)理試卷(解析版) 題型:選擇題
已知雙曲線的漸近線方程為,焦點(diǎn)坐標(biāo)為,則雙曲線方程為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4\sqrt{3}}{3}$ | B. | $\frac{4\sqrt{2}}{3}$ | C. | 4$\sqrt{3}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3π}{2}$ | B. | 3π | C. | 6π | D. | 24π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 8 | C. | 2$\sqrt{13}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b | B. | a<c | C. | b>c | D. | a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4\sqrt{3}}{3}$ | B. | 2$\sqrt{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com