如圖,A、B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個頂點,|AB|=
5
,直線AB的斜率為-
1
2

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l平行與AB,并與橢圓相交于C、D兩點,求△OCD的面積的最大值.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(Ⅰ)由已知條件推導(dǎo)出|AB|=
a2+b2
=
5
,k=
b-0
0-a
=-
b
a
=-
1
2
,由此能求出橢圓的方程.
(Ⅱ)設(shè)直線l的方程為y=-
1
2
x+m
,將其代入
x2
4
+y2=1
,消去y并整理,得2x2-4mx+4m2-4=0,設(shè)C(x1,y1),D(x2,y2),則
△=16m2-32(m2-1)>0
x1+x2=2m
x1x2=2m2-2
,由此利用點到直線的距離公式和配方法能求出△OCD的面積的最大值.
解答: 解:(Ⅰ)∵A、B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個頂點,
|AB|=
5
,直線AB的斜率為-
1
2
,
∴A(a,0),B(0,b),|AB|=
a2+b2
=
5
,
k=
b-0
0-a
=-
b
a
=-
1
2
,
解得a=2,b=1,
∴橢圓的方程為
x2
4
+y2=1

(Ⅱ)∵l∥AB,∴設(shè)直線l的方程為y=-
1
2
x+m
,
將其代入
x2
4
+y2=1
,消去y并整理,得2x2-4mx+4m2-4=0,
設(shè)C(x1,y1),D(x2,y2),則
△=16m2-32(m2-1)>0
x1+x2=2m
x1x2=2m2-2
,
|CD|=
(x1-x2)2+
1
22
(x-x2)2
=
1+
1
4
•|x1-x2|
,
|x1-x2|=
(x1+x2)2-4x1x2
2
2-m2

∴|CD|=
5
2-m2
,
點O到直線CD的距離d=
|2m|
5
,
∴△OCD的面積S=
1
2
|CD|•d=
1
2
5
2-m2
|2m|
5

=|m|
2-m2
=
2m2-m 4
,
令m2=n,則0<n<2,2m2-n4=-n2+2n=-(n-1)2+1≤1,
∴△OCD的面積的最大值為1.
點評:本題考查橢圓方程的求法,考查三角形面積的最大值的求法,解題時要認(rèn)真審題,注意點到直線的距離公式和配方法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

電視傳媒為了解某市100萬觀眾對足球節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾每周平均收看足球節(jié)目時間的頻率分布直方圖,將每周平均收看足球節(jié)目時間不低于1.5小時的觀眾稱為“足球迷”,并將其中每周平均收看足球節(jié)目時間不低于2.5小時的觀眾稱為“鐵桿足球迷”.
(1)試估算該市“足球迷”的人數(shù),并指出其中“鐵桿足球迷”約為多少人;
(2)該市要舉辦一場足球比賽,已知該市的足球場可容納10萬名觀眾.根據(jù)調(diào)查,如果票價定為100元/張,則非“足球迷”均不會到現(xiàn)場觀看,而“足球迷”均愿意前往現(xiàn)場觀看.如果票價提高10x元/張(x∈N),則“足球迷”中非“鐵桿足球迷”愿意前往觀看的人數(shù)會減少10x%,“鐵桿足球迷”愿意前往觀看的人數(shù)會減少
100x
x+11
%.問票價至少定為多少元/張時,才能使前往現(xiàn)場觀看足球比賽的人數(shù)不超過10萬人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(
π
4
x-
π
3
)+2cos2
π
8
x.
(Ⅰ)求f(x)的最小正周期及最值;
(Ⅱ)在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,若f(a)=1+
3
2
,a∈(0,5),A=
π
3
,b=1,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為D,若它的值域是D的子集,則稱f(x)在D上封閉.
(Ⅰ)試判斷f(x)=2x,g(x)=log2x是否在(1,+∞)上封閉;
(Ⅱ)設(shè)f1(x)=f(x),fn(x)=f(fn-1(x))(n∈N*,n≥2),若fn(x)(n∈N*)的定義域均為D,求證:fn(x)在D上封閉的充分必要條件是f1(x)在D上封閉;
(Ⅲ)若a>0,求證:h(x)=
2
2
(|xsinx|+|xcosx|)在[0,a]上封閉,并指出值域為[0,a]時a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)k∈R,且k≠0,e為自然對數(shù)的底數(shù),函數(shù)f(x)=
k•ex
ex+1
,g(x)=f(x)-x.
(1)如果函數(shù)g(x)在R上為減函數(shù),求k的取值范圍;
(2)如果k∈(0,4],求證:方程g(x)=0有且有一個根x=x0;且當(dāng)x>x0時,有x>f(f(x))成立;
(3)定義:①對于閉區(qū)間[s,t],稱差值t-s為區(qū)間[s,t]的長度;②對于函數(shù)g(x),如果對任意x1,x2∈[s,t]⊆D(D為函數(shù)g(x)的定義域),記h=|g(x2)-g(x1)|,h的最大值稱為函數(shù)g(x)在區(qū)間[s,t]上的“身高”.問:如果k∈(0,4],函數(shù)g(x)在哪個長度為2的閉區(qū)間上“身高”最“矮”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,-1),
b
=(
3
cosx,-
1
2
)
,函數(shù)f(x)=(
a
+
b
)•
a
-2
,求函數(shù)f(x)的最小正周期T及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>0,b>0)的離心率為
1
2
,且經(jīng)過點P(1,
3
2
).
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)橢圓E的內(nèi)接平行四邊形ABCD的一組對邊分別過橢圓的焦點F1,F(xiàn)2,求該平行四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知角α終邊上一點P(-4a,3a),a≠0,求
cos(
π
2
+α)sin3(-π-α)
cos(
11π
2
-α)sin2(
2
+α)
的值.
(2)已知tanα=3,求
1
2sinαcosα+cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x+2cos2x+m在區(qū)間[0,
π
2
]上的最大值為3,則
(Ⅰ)m=
 

(Ⅱ)當(dāng)f(x)在[a,b]上至少含有20個零點時,b-a的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案