要制作一個(gè)容積為96πm3的圓柱形水池,已知池底的造價(jià)為30元/m2,池子側(cè)面造價(jià)為20元/m2.如果不計(jì)其他費(fèi)用,問(wèn)如何設(shè)計(jì),才能使建造水池的成本最低?最低成本是多少?
分析:此題首先需要由實(shí)際問(wèn)題向數(shù)學(xué)問(wèn)題轉(zhuǎn)化,設(shè)池底半徑為r,池高為h,成本為y,建立函數(shù)關(guān)系式,然后利用導(dǎo)數(shù)研究函數(shù)的最值即可求出所求.
解答:解:設(shè)池底半徑為r,池高為h,成本為y,則:
96π=πr2h⇒h=
96
r2
 …(2分)
y=30πr2+20×2πrh=10πr(3r+4h)=30π(r2+
128
r
) …(4分)
y'=30π(2r-
128
r2
)         …(5分)
令y'=30π(2r-
128
r2
)=0,得r=4,h=6 …(6分)
又r<4時(shí),y'<0,y=30π(r2+
128
r
)是減函數(shù); …(7分)
r>4時(shí),y'>0,y=30π(r2+
128
r
)是增函數(shù); …(8分)
所以r=4時(shí),y=30π(r2+
128
r
)的值最小,最小值為1440π…(9分)
答:當(dāng)池底半徑為4米,桶高為6米時(shí),成本最低,最低成本為1440π元.…(10分)
點(diǎn)評(píng):本題考查建立數(shù)學(xué)模型的能力及利用導(dǎo)數(shù)研究函數(shù)的最值,同時(shí)考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要制作一個(gè)容積為96πm3的圓柱形水池(無(wú)蓋),已知池底的造價(jià)為30元/m2,水池側(cè)面造價(jià)為20元/m2.如果不計(jì)其他費(fèi)用,欲使建造的成本最低,則池底的半徑應(yīng)為
4
4
   米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

要制作一個(gè)容積為96πm3的圓柱形水池,已知池底的造價(jià)為30元/m2,池子側(cè)面造價(jià)為20元/m2.如果不計(jì)其他費(fèi)用,問(wèn)如何設(shè)計(jì),才能使建造水池的成本最低?最低成本是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

要制作一個(gè)容積為96πm3的圓柱形水池,已知池底的造價(jià)為30元/m2,池子側(cè)面造價(jià)為20元/m2.如果不計(jì)其他費(fèi)用,問(wèn)如何設(shè)計(jì),才能使建造水池的成本最低?最低成本是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年安徽省馬鞍山市高二學(xué)業(yè)水平測(cè)試數(shù)學(xué)試卷(選修1-1)(解析版) 題型:解答題

要制作一個(gè)容積為96πm3的圓柱形水池,已知池底的造價(jià)為30元/m2,池子側(cè)面造價(jià)為20元/m2.如果不計(jì)其他費(fèi)用,問(wèn)如何設(shè)計(jì),才能使建造水池的成本最低?最低成本是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案