一個袋中裝有形狀大小完全相同的球9個,其中紅球3個,白球6個,每次隨機取1個,直到取出3次紅球即停止.
(1)從袋中不放回地取球,求恰好取4次停止的概率P1;
(2)從袋中有放回地取球.
①求恰好取5次停止的概率P2;
②記5次之內(nèi)(含5次)取到紅球的個數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.

(1)  (2) ①

解析試題分析:(1)從袋中不放回地取球,連續(xù)取4次,有個不同的結(jié)果,由于是隨機取的,每個結(jié)果出現(xiàn)的可能性是相等的,恰好取4次停止,說明前三次有一次是白球,共有個不同的結(jié)果,所以,根據(jù)古典概型的概率公式得
(2) 從袋中有放回地取球,每次取到紅球的概率 ,取到白球的概率是 連續(xù)有放回地取 次,相當(dāng)于次獨立重復(fù)試驗;
①求恰好取5次停止的概率P2;說明前四次有兩次發(fā)生,第五次一定發(fā)生;
②記5次之內(nèi)(含5次)取到紅球的個數(shù)為,隨機變量的所以可能取值集合是 
次獨立重復(fù)試驗概率公式即可求出隨機變量分布列,并由數(shù)學(xué)期望的公式計算出.
試題解析:
解:(1)                              4分
(2)①                          6分
②隨機變量的取值為
次獨立重復(fù)試驗概率公式,得




隨機變量的分布列是


0
1
2
3





的數(shù)學(xué)期望是
                      12分
考點:1、古典概型;2、獨立重復(fù)試驗;3、離散型隨機變量的分布列與數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,A地到火車站共有兩條路徑,據(jù)統(tǒng)計,通過兩條路徑所用的時間互不影響,所用時間落在個時間段內(nèi)的頻率如下表:

時間(分鐘)
1020
2030
3040
4050
5060
的頻率





的頻率
0




 
現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站.
(1)為了盡最大可能在各自允許的時間內(nèi)趕到火車站,甲和乙應(yīng)如何選擇各自的路徑?
(2)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到火車站的人數(shù),針對(1)的選擇方案,求X的分布列和數(shù)學(xué)期望 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一批產(chǎn)品需要進行質(zhì)量檢驗,檢驗方案是:先從這批產(chǎn)品中任取4件作檢驗,這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n.如果n=3,再從這批產(chǎn)品中任取4件作檢驗,若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;如果n=4,再從這批產(chǎn)品中任取1件作檢驗,若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;其他情況下,這批產(chǎn)品都不能通過檢驗.
假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨立.
(1)求這批產(chǎn)品通過檢驗的概率;
(2)已知每件產(chǎn)品檢驗費用為100元,凡抽取的每件產(chǎn)品都需要檢驗,對這批產(chǎn)品作質(zhì)量檢驗所需的費用記為X(單位:元),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和4個黑球.現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.
(1)求取出的4個球均為黑球的概率;
(2)求取出的4個球中恰有1個紅球的概率;
(3)設(shè)ξ為取出的4個球中紅球的個數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校高三(1)班共有名學(xué)生,他們每天自主學(xué)習(xí)的時間全部在分鐘到分鐘之間,按他們學(xué)習(xí)時間的長短分個組統(tǒng)計,得到如下頻率分布表:

組別
 
分組
 
頻數(shù)
 
頻率
 
第一組
 

 
 
 

 
第二組
 

 

 

 
第三組
 

 

 

 
第四組
 

 

 

 
第五組
 

 
 
 

 
(1)求分布表中,的值;
(2)王老師為完成一項研究,按學(xué)習(xí)時間用分層抽樣的方法從這名學(xué)生中抽取名進行研究,問應(yīng)抽取多少名第一組的學(xué)生?
(3)已知第一組學(xué)生中男、女生人數(shù)相同,在(2)的條件下抽取的第一組學(xué)生中,既有男生又有女生的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租不超過兩小時免費,超過兩小時的收費標準為2元(不足1小時的部分按1小時計算).有人獨立來該租車點則車騎游.各租一車一次.設(shè)甲、乙不超過兩小時還車的概率分別為;兩小時以上且不超過三小時還車的概率分別為,;兩人租車時間都不會超過四小時.
(1)求出甲、乙所付租車費用相同的概率;
(2)求甲、乙兩人所付的租車費用之和為隨機變量X,求X的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

圖是某市日至日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)()小于表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于表示空氣重度污染,某人隨機選擇日至日中的某一天到達該市,并停留天.

(1)求此人到達當(dāng)日空氣質(zhì)量優(yōu)良的概率;
(2)求此人停留期間至多有1天空氣重度污染的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

年齡在60歲(含60歲)以上的人稱為老齡人,某地區(qū)老齡人共有35萬,隨機調(diào)查了該地區(qū)700名老齡人的健康狀況,結(jié)果如下表:

健康指數(shù)
 
2
 
1
 
0
 
-1
 
60歲至79歲的人數(shù)
 
250
 
260
 
65
 
25
 
80歲及以上的人數(shù)
 
20
 
45
 
20
 
15
 
其中健康指數(shù)的含義是:2表示“健康”,1表示“基本健康”,0表示“不健康,但生活能夠自理”,-1表示“生活不能自理”。
(1)估計該地區(qū)80歲以下老齡人生活能夠自理的概率。
(2)若一個地區(qū)老齡人健康指數(shù)的平均值不小于1.2,則該地區(qū)可被評為“老齡健康地區(qū)”.
請寫出該地區(qū)老齡人健康指數(shù)X分布列,并判斷該地區(qū)能否被評為“老齡健康地區(qū)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,由M到N的電路中有4個元件,分別標為T1,T2,T3,T4,電流能通過T1,T2,T3的概率都是p,電流能通過T4的概率是0.9.電流能否通過各元件相互獨立.已知T1,T2,T3中至少有一個能通過電流的概率為0.999.

(1)求p;
(2)求電流能在M與N之間通過的概率.

查看答案和解析>>

同步練習(xí)冊答案