如圖,直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,AE=EBFCE上的點,且BF⊥平面ACE.

 

(1)求證AE⊥平面BCE;

(2)求二面角B-AC-E的大;

(3)求點D到平面ACE的距離.

解法一:(1)∵BF⊥平面ACE,∴BFAE.

∵二面角D-AB-E為直二面角、且CBAB,

CB⊥平面ABE.∴CBAE.∴AE⊥平面BCE.

(2)連結(jié)BDACG,連結(jié)FG,

∵正方形ABCD邊長為2,∴BGAC,BG=.

BF⊥平面ACE,由三垂線定理的逆定理得FGAC,

∴∠BGF是二面角B-AC-E的平面角.

由(1)AE⊥平面BCE,∴AEEB.又∵AE=EB,

∴在等腰直角三角形中、BE=.

又∵直角三角形BCE中,EC=∴直角三角形BFG中,sin∠BGF=

∴二面角B-AC-E等于arcsin

(3)過EEOABABO,OE=1,

∵二面角D-AB-E為直二面角,

EO⊥平面ABCD.

設(shè)D到平面ACE的距離為h,

VDACE=VEACD,∴SACE·h=SACD·EO.

AE⊥平面BCE,∴AEEC.

∴點D到平面ACE的距離為

解法二:(1)同解法一.

(2)以線段AB的中點為原點O,OE所在直線為x軸,AB所在直線為y軸,過O點平行于AD的直線為z軸、建立空間直角坐標系O-xyz,如圖.

AE⊥平面BCE、BEBCE,∴AEBE.在直角三角形AEB中,AB=2,OAB的中點.

OE=1,A(0,-1,0),E(1,0,0),C(0,1,2),=(1,1,0),=(0,2,2).

設(shè)平面AEC的一個法向量n=(x,y,z),則

x=1,得n=(1,-1,1)是平面EAC的一個法向量.

又平面BAC的一個法向量為m=(1、0、0),

∴cos〈m、n〉=

∴二面角B-AC-E的大小為arccos.

(3)∵ADz軸,AD=2,∴=(0,0,2),

∴點D到平面ACE的距離d=||·|cos〈,n〉|=


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)直三棱柱A1B1C1-ABC的三視圖如圖所示,D、E分別為棱CC1和B1C1的中點.精英家教網(wǎng)
 (1)求點B到平面A1C1CA的距離;
(2)求二面角B-A1D-A的余弦值;
(3)在AC上是否存在一點F,使EF⊥平面A1BD,若存在確定其位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,五面體A-BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四邊形BCC1B1是矩形,二面角A-BC-C1為直二面角.
(Ⅰ)若D是AC中點,求證:AB1∥平面BDC1;
(Ⅱ)求該五面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,AB=AC=
1
2
AA1=a
,∠BAC=90°,D為棱d=
3
5
10
的中點.
(I)證明:A1D⊥平面ADC;
(II)求異面直線A1C與C1D所成角的大。
(III)求平面A1CD與平面ABC所成二面角的大。▋H考慮銳角情況).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:五面體A-BCC1B1中,AB1=4,△ABC 是正三角形,AB=2,四邊形  BCC1B1是矩形,二面角A-BC-C1為直二面角,D為AC的中點.
(1)求證:AB1∥平面BDC1
(2)求二面角C-BC1-D的大。
(3)若A、B、C、C1為某一個球面上的四點,求該球的半徑r.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直四棱柱A1B1C1D1-ABCD的高為3,底面是邊長為4,且∠DAB=60°的菱形,O是AC與BD的交點,O1是A1C1與B1D1的交點.
(I) 求二面角O1-BC-D的大;
(II) 求點A到平面O1BC的距離.

查看答案和解析>>

同步練習冊答案