數學英語物理化學 生物地理
數學英語已回答習題未回答習題題目匯總試卷匯總
(本小題滿分13分)設函數.(1)求證:不論為何實數總為增函數;(2)確定的值,使為奇函數及此時的值域.
解: (1) 的定義域為R, ,則=,, ,即,所以不論為何實數總為增函數.……6分(2) 為奇函數, ,即,解得: 由以上知, ,,所以的值域為……13分
解析
科目:高中數學 來源: 題型:解答題
已知函數.(1)求函數的單調區(qū)間,并指出其增減性;(2)若關于x的方程至少有三個不相等的實數根,求實數a的取值范圍.
(本題滿分10分)設是奇函數(),(1)求出的值(2)若的定義域為[](),判斷在定義域上的增減性,并加以證明;
(本小題滿分12分)已知二次函數滿足,及.(1)求的解析式;(2)若,,試求的值域.
已知函數,其中為常數(1)證明:函數在R上是減函數.(2)當函數是奇函數時,求實數的值.
已知二次函數滿足(1)求函數的解析式 ; (2)若在上恒成立,求實數的取值范圍;(3)求當(>0)時的最大值
(本小題滿分14分)已知是定義在上的奇函數,且,若時,有.(1)解不等式;(2)若對所有恒成立,求實數的取值范圍.
()(1)求的定義域;(2)問是否存在實數、,當時,的值域為,且 若存在,求出、的值,若不存在,說明理由.
求函數在區(qū)間[2,6]上的最大值和最小值.
百度致信 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)