在直角坐標系中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,設(shè)曲線C:
x=cosα
y=sinα
(α為參數(shù)),直線l:ρ(cosθ+sinθ)=4.點P為曲線C上的一動點,則P到直線l的距離最大時的極坐標為
 
考點:點的極坐標和直角坐標的互化,參數(shù)方程化成普通方程
專題:選作題,坐標系和參數(shù)方程
分析:先把直線l的極坐標方程化為直角坐標方程,然后在曲線C上任取一點,由點到直線的距離公式可表示出點P到直線l的距離d,利用三角函數(shù)公式即可求得d的最大值,即可得出結(jié)論..
解答: 解:∵ρ(cosθ+sinθ)=4,
∴l(xiāng):x+y-4=0.
∴點P到直線l的距離為d=
|cosα+sinα-4|
2
=
|
2
sin(α+
π
4
)-4|
2
,
∴sin(α+
π
4
)=-1時,P到直線l的距離最大,此時α可取
4
,
∴P到直線l的距離最大時的極坐標為(1,
4
).
故答案為:(1,
4
).
點評:本題考查參數(shù)方程、極坐標方程、點到直線的距離公式,考查學生分析解決問題的能力,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

袋中裝有4個白棋子、3個黑棋子,從袋中隨機地取棋子,設(shè)取到一個白棋子得2分,取到一個黑棋子得1分,從袋中任取4個棋子.
(1)求得分X的分布列;
(2)求得分大于6的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x+
2
x
的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex+ax,(其中e為自然對數(shù)的底數(shù)),
(1)設(shè)曲線y=f(x)在x=1處的切線與直線(e-1)x-y=1平行,求a的值;
(2)若對于任意實數(shù)x≥0,f(x)>0恒成立,試確定實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解下列方程(組):
(1)
x+y=1
xy=-12

(2)2x2-4x+3
x2-2x+4
=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x|x-a|+b,x∈R.
(Ⅰ)當a=1,b=0時,解不等式:f(x)≤0;
(Ⅱ)若b<0,b為常數(shù)且對任何x∈[0,1]不等式f(x)<0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
、
b
的長度為|
a
|=4,|
b
|=2,且
a
、
b
的夾角為120°,求|3
a
-4
b
|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果如圖程序框圖的輸出結(jié)果為0,那么在判斷框中①表示的“條件”應(yīng)該是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<x<1,-1<y<1,則x-y的取值范圍是
 

查看答案和解析>>

同步練習冊答案