橢圓x2+my2=1的焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,則m的值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    2
  4. D.
    4
A
分析:根據(jù)題意,求出長(zhǎng)半軸和短半軸的長(zhǎng)度,利用長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,解方程求出m的值.
解答:橢圓x2+my2=1的焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,∴,
故選 A.
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì),用待定系數(shù)法求參數(shù)m的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓x2+my2=1的離心率為
3
2
,則m的值為( 。
A、2
B、
1
4
C、2或
1
2
D、
1
4
或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓x2+my2=1的離心率為
3
2
,則它的長(zhǎng)半軸長(zhǎng)為( 。
A、1B、2C、1或2D、與m有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列4個(gè)命題:
①函數(shù)y=f(x)在一點(diǎn)的導(dǎo)數(shù)值為0是函數(shù)y=f(x)在這點(diǎn)取極值的充要條件;
②若橢圓x2+my2=1的離心率為
3
2
,則它的長(zhǎng)半軸長(zhǎng)為1;
③對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-1)f′(x)≥0,則必有f(0)+f(2)≥2f(1);
④經(jīng)過(guò)點(diǎn)(1,1)的直線,必與
x2
4
+
y2
2
=1有2個(gè)不同的交點(diǎn).
其中真命題的為
③④
③④
將你認(rèn)為是真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓x2+my2=1的離心率e∈(
1
2
 , 1)
,則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=x2-2xsinα+1的頂點(diǎn)在橢圓x2+my2=1上,這樣的拋物線有且只有兩條,則m的取值范圍是
(0,1)
(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案