【題目】如圖,已知四棱錐,底面為平行四邊形,且,點M為的中點,,且平面平面.
(1)求證:平面平面;
(2)當(dāng)直線與平面所成角的正切值為時,求四棱錐的體積及平面將四棱錐分成的兩部分的體積比.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017版)規(guī)定了數(shù)學(xué)直觀想象學(xué)科的六大核心素養(yǎng),為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗,根據(jù)測驗結(jié)果繪制了雷達(dá)圖(如圖,每項指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(注:雷達(dá)圖,又可稱為戴布拉圖、蜘蛛網(wǎng)圖,可用于對研究對象的多維分析)( )
A.甲的直觀想象素養(yǎng)高于乙
B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)據(jù)分析素養(yǎng)
C.乙的數(shù)學(xué)建模素養(yǎng)與數(shù)學(xué)運(yùn)算素養(yǎng)一樣
D.乙的六大素養(yǎng)整體水平低于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)在處的切線方程;
(2)設(shè)
①當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
②當(dāng)時,求函數(shù)的極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】骰子,古代中國民間娛樂用來投擲的博具,早在戰(zhàn)國時期就有.最常見的骰子是正六面體,也有正十四面體、球形十八面體等形制的骰子,如圖是滿城漢墓出土的銅煢,它是一個球形十八面體骰子,有十六面刻著一至十六數(shù)字,另兩面刻“驕”和“酒來”,其中“驕”表示最大數(shù)十七,“酒來”表示最小數(shù)零,每投一次,出現(xiàn)任何一個數(shù)字都是等可能的.現(xiàn)投擲銅煢三次觀察向上的點數(shù),則這三個數(shù)能構(gòu)成公比不為1的等比數(shù)列的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,組合體由半個圓錐和一個三棱錐構(gòu)成,其中是圓錐底面圓心,是圓弧上一點,滿足是銳角,.
(1)在平面內(nèi)過點作平面交于點,并寫出作圖步驟,但不要求證明;
(2)在(1)中,若是中點,且,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種水果按照果徑大小可分為四類:標(biāo)準(zhǔn)果,優(yōu)質(zhì)果,精品果,禮品果.某采購商從采購的一批水果中隨機(jī)抽取100個,利用水果的等級分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:
等級 | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
個數(shù) | 10 | 30 | 40 | 20 |
(1)用樣本估計總體,果園老板提出兩種購銷方案給采購商參考:
方案1:不分類賣出,單價為20元/.
方案2:分類賣出,分類后的水果售價如下表:
等級 | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
售價(元/) | 16 | 18 | 22 | 24 |
從采購商的角度考慮,應(yīng)該采用哪種方案較好?并說明理由.
(2)從這100個水果中用分層抽樣的方法抽取10個,再從抽取的10個水果中隨機(jī)抽取3個,表示抽取到精品果的數(shù)量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一圓錐底面圓的直徑為3,圓錐的高為,在該圓錐內(nèi)放置一個棱長為a的正四面體,并且正四面體在該幾何體內(nèi)可以任意轉(zhuǎn)動,則a的最大值為( )
A.3B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,左焦點、右焦點都在軸上,點是橢圓上的動點,的面積的最大值為,在軸上方使成立的點只有一個.
(1)求橢圓的方程;
(2)過點的兩直線,分別與橢圓交于點,和點,,且,比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,D是的中點.
(1)證明:平面;
(2)若是邊長為2的正三角形,且,,平面平面.求平面與側(cè)面所成二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com