【題目】在正方體中,,分別為,的中點(diǎn)
(1)求證:面;
(2)在棱上是否存在一點(diǎn),使得面,若存在,試確定的值,若不存在說(shuō)明理由;
(3)在(2)的條件下,求面與面所成二面角的正弦值.
【答案】(1)詳見(jiàn)解析(2)存在,(3)
【解析】
(1) 取AB中點(diǎn)N,連接A1N,FN,可證得AE垂直于A1N,而A1NFD是平行四邊形,可得到AE垂直于,再由A1D1 AE可得到線面垂直;(2)取A1B1中點(diǎn)G,取GB1中點(diǎn)M,連接GB,ME,MC1,通過(guò)證明線線平行即ME可得到線面平行;(3)建立坐標(biāo)系,求得兩個(gè)面的法向量,先得到余弦值,進(jìn)而得到二面角的正弦值.
(1)證明:取AB中點(diǎn)N,連接A1N,F(xiàn)N,
在正方體AC1中,ANFD,所以四邊形ANFD為平行四邊形,ADFN,
因?yàn)锳1D1AD,所以A1D1 FN,所以四邊形A1NFD1為平行四邊形,A1NFD1
在正方形A1B1BA中,RtEBA≌RtNAA1,所以∠EAB=∠NA1A
因?yàn)椤螦1NA +∠NA1A=90°所以∠A1NA +∠EAB =90°,AEA1N,AE FD1
A1D1面A1B1BA,AE面A1B1BA,所以A1D1 AE,所以AE面A1FD1。
(2) 取A1B1中點(diǎn)G,取GB1中點(diǎn)M,連接GB,ME,MC1,
A1GBN,所以四邊形A1GBN為平行四邊形,A1NBG
E為B1B的中點(diǎn),M點(diǎn)為A1B1的四等分點(diǎn),
所以EM∥BG,EM∥FD1
FD1面C1ME,EM面C1ME,所以D1F//面C1ME,
此時(shí)=
(3)如圖分別以AB、AD、AA1為x、y、z軸建立空間坐標(biāo)系,
則E(2,0,1),C1(2,2,2),M(,0,2), A1(0,0,2), D1(0,2,2), F(1,2,0)
=(,2,0) =(0,2,1) =(0,2,0) =(-1,0,2)
設(shè)面MEC1的法向量為=(x,y,z)
得令y=1,則x=4,z=2, =(4,1,2)
設(shè)面的法向量為=(x,y,z)
得y=0令z=1,則x=2, =(2,0,1)
cos<>===
設(shè)面A1FD1與面C1ME所成二面角為θ,則|cosθ|=|cos<>|=
所以sinθ==
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人口老齡化的到來(lái),我國(guó)的勞動(dòng)力人口在不斷減少,“延遲退休”已經(jīng)成為人們?cè)絹?lái)越關(guān)注的話題,為了解公眾對(duì)“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機(jī)抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
年齡 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人數(shù) | 4 | 5 | 8 | 5 | 3 |
年齡 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人數(shù) | 6 | 7 | 3 | 5 | 4 |
經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人.現(xiàn)從這兩組的被調(diào)查者中各隨機(jī)選取2人,進(jìn)行跟蹤調(diào)查.
(I)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(II)若選中的4人中,不贊成“延遲退休”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某船在處測(cè)得燈塔在其南偏東方向上,該船繼續(xù)向正南方向行駛5海里到處,測(cè)得燈塔在其北偏東方向上,然后該船向東偏南方向行駛2海里到處,此時(shí)船到燈塔的距離為多少海里( )
A.千米B.千米C.6千米D.5千米
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,直線的斜率為,直線的斜率為,且.
(1)求點(diǎn)的軌跡的方程;
(2)設(shè),,連接并延長(zhǎng),與軌跡交于另一點(diǎn),點(diǎn)是中點(diǎn),是坐標(biāo)原點(diǎn),記與的面積之和為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等比數(shù)列的公比為,其前項(xiàng)和為,前項(xiàng)之積為,并且滿足條件:,,,下列結(jié)論中正確的是( )
A. B.
C. 是數(shù)列中的最大值 D. 數(shù)列無(wú)最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列,等差數(shù)列滿足,且是與的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種蔬菜從1月1日起開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時(shí)間(單位:10天)的數(shù)據(jù)如下表:
時(shí)間 | 5 | 11 | 25 |
種植成本 | 15 | 10.8 | 15 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,,,中(其中),選取一個(gè)合適的函數(shù)模型描述該蔬菜種植成本與上市時(shí)間的變化關(guān)系;
(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時(shí)的上市時(shí)間及最低種植成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,若△ABC的周長(zhǎng)為2(+1),且sin B+sin C=sin A,則a= ( )
A. B. 2 C. 4 D.
【答案】B
【解析】
根據(jù)正弦定理把轉(zhuǎn)化為邊的關(guān)系,進(jìn)而根據(jù)△ABC的周長(zhǎng),聯(lián)立方程組,可求出a的值.
根據(jù)正弦定理,可化為
∵△ABC的周長(zhǎng)為,
∴聯(lián)立方程組,
解得a=2.
故選:B
【點(diǎn)睛】
(1)在三角形中根據(jù)已知條件求未知的邊或角時(shí),要靈活選擇正弦、余弦定理進(jìn)行邊角之間的轉(zhuǎn)化,以達(dá)到求解的目的.
(2)求角的大小時(shí),在得到角的某一個(gè)三角函數(shù)值后,還要根據(jù)角的范圍才能確定角的大小,這點(diǎn)容易被忽視,解題時(shí)要注意.
【題型】單選題
【結(jié)束】
7
【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是( )
A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com