分析 由已知得$\overrightarrow{m}-\overrightarrow{n}$=(cos$\frac{x}{2}$+$\sqrt{3}$,sin$\frac{x}{2}$-1),則|$\overrightarrow{m}-\overrightarrow{n}$|=$\sqrt{(cos\frac{x}{2}+\sqrt{3})^{2}+(sin\frac{x}{2}-1)^{2}}$=$\sqrt{5+2\sqrt{3}cos\frac{x}{2}-2sin\frac{x}{2}}$,利用三角函數(shù)的性質(zhì)即可求解.
解答 解:由已知得$\overrightarrow{m}-\overrightarrow{n}$=(cos$\frac{x}{2}$+$\sqrt{3}$,sin$\frac{x}{2}$-1),則|$\overrightarrow{m}-\overrightarrow{n}$|=$\sqrt{(cos\frac{x}{2}+\sqrt{3})^{2}+(sin\frac{x}{2}-1)^{2}}$=$\sqrt{5+2\sqrt{3}cos\frac{x}{2}-2sin\frac{x}{2}}$=$\sqrt{5+4cos(\frac{x}{2}+\frac{π}{6})}$$≤\sqrt{9}=3$.
故答案為:3.
點(diǎn)評 本題考查了平面向量的坐標(biāo)運(yùn)算、模的取值范圍,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12種 | B. | 20種 | C. | 24種 | D. | 48種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{2}$或$\frac{\sqrt{21}}{3}$ | D. | $\frac{\sqrt{3}}{3}$或$\frac{\sqrt{21}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ①② | C. | ②③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{5}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com