6.已知$\overrightarrow m=(cos\frac{x}{2},sin\frac{x}{2})$,$\overrightarrow n=(-\sqrt{3},1)$,則$|\overrightarrow m-\overrightarrow n|$的最大值是3.

分析 由已知得$\overrightarrow{m}-\overrightarrow{n}$=(cos$\frac{x}{2}$+$\sqrt{3}$,sin$\frac{x}{2}$-1),則|$\overrightarrow{m}-\overrightarrow{n}$|=$\sqrt{(cos\frac{x}{2}+\sqrt{3})^{2}+(sin\frac{x}{2}-1)^{2}}$=$\sqrt{5+2\sqrt{3}cos\frac{x}{2}-2sin\frac{x}{2}}$,利用三角函數(shù)的性質(zhì)即可求解.

解答 解:由已知得$\overrightarrow{m}-\overrightarrow{n}$=(cos$\frac{x}{2}$+$\sqrt{3}$,sin$\frac{x}{2}$-1),則|$\overrightarrow{m}-\overrightarrow{n}$|=$\sqrt{(cos\frac{x}{2}+\sqrt{3})^{2}+(sin\frac{x}{2}-1)^{2}}$=$\sqrt{5+2\sqrt{3}cos\frac{x}{2}-2sin\frac{x}{2}}$=$\sqrt{5+4cos(\frac{x}{2}+\frac{π}{6})}$$≤\sqrt{9}=3$.
故答案為:3.

點(diǎn)評 本題考查了平面向量的坐標(biāo)運(yùn)算、模的取值范圍,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.經(jīng)市場調(diào)查,某商品每噸的價格為x(1<x<14)萬元時,該商品的月供給量為y1噸,y1=ax+$\frac{7}{2}$a2-a(a>0):月需求量為y2噸,y2=-$\frac{1}{224}$x2-$\frac{1}{112}$x+1,當(dāng)該商品的需求量大于供給量時,銷售量等于供給量:當(dāng)該商品的需求量不大于供給量時,銷售量等于需求量,該商品的月銷售額等于月銷售量與價格的乘積.
(1)已知a=$\frac{1}{7}$,若某月該商品的價格為x=7,求商品在該月的銷售額(精確到1元);
(2)記需求量與供給量相等時的價格為均衡價格,若該商品的均衡價格不低于每噸6萬元,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.五本不同的書在書架上排成一排,其中甲,乙兩本必須連排,而丙,丁兩本不能連排,則不同的排法共( 。
A.12種B.20種C.24種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若m是2和8的等比中項,則圓錐曲線$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1的離心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$或$\frac{\sqrt{21}}{3}$D.$\frac{\sqrt{3}}{3}$或$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在三棱錐A-BCD中,E是AC中點(diǎn),F(xiàn)在線段AD上,且FD=3AF,則三棱錐A-BEF的體積與四棱錐B-ECDF的體積的比值為$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為4π,且對?x∈R,有f(x)≤f($\frac{2π}{3}$)成立,則關(guān)于函數(shù)f(x)的下列說法中正確的是( 。
①φ=$\frac{π}{6}$
②函數(shù)f(x)在區(qū)間[-π,π]上遞減;
③把g(x)=sin$\frac{x}{2}$的圖象向左平移$\frac{π}{3}$得到f(x)的圖象;
④函數(shù)f(x+$\frac{4π}{3}$)是偶函數(shù).
A.①③B.①②C.②③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=|sinx|+cosx,現(xiàn)有如下幾個命題:
①該函數(shù)為偶函數(shù);
②該函數(shù)最小正周期為$\frac{π}{2}$;
③該函數(shù)值域為$[-1,\sqrt{2}]$;
④若定義區(qū)間(a,b)的長度為b-a,則該函數(shù)單調(diào)遞增區(qū)間長度的最大值為$\frac{3π}{4}$.
其中正確命題為①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左焦點(diǎn)為F,若點(diǎn)F關(guān)于直線$y=-\frac{1}{2}x$的對稱點(diǎn)P在橢圓C上,則橢圓C的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某幾何體的三視圖如圖所示,則該幾何體的體積是(  )
A.$\frac{2π}{3}$B.πC.D.

查看答案和解析>>

同步練習(xí)冊答案