直線L1:x+y+1=0與直線L2:ax+y-1=0,若L1∥L2,則a的值等于
 
,它們之間的距離為
 
,若L1⊥L2,則a的值等于
 
考點:兩條平行直線間的距離,直線的一般式方程與直線的平行關(guān)系,直線的一般式方程與直線的垂直關(guān)系
專題:
分析:由L1∥L2,得
a
1
=
1
1
-1
1
;直線L1和直線L2之間的距離d=
|1-(-1)|
12+12
=
2
;由L1⊥L2,得a+1=0.由此能求出結(jié)果.
解答:解:∵直線L1:x+y+1=0與直線L2:ax+y-1=0,L1∥L2,
a
1
=
1
1
-1
1

解得a=1.
直線L1和直線L2之間的距離d=
|1-(-1)|
12+12
=
2
,
∵直線L1:x+y+1=0與直線L2:ax+y-1=0,L1⊥L2,
∴a+1=0,解得a=-1.
故答案為:1,
2
,-1.
點評:本題考查實數(shù)值的求法,考查兩平行線間的距離的求法,解題時要認(rèn)真審題,注意兩直線的位置關(guān)系的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

”A=1,for i=1to 5,A=A*i,i=i+1,next,輸出A”,該語句執(zhí)行后輸出的結(jié)果A是( 。
A、5B、6C、15D、120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=loga(x-1)+3(a>0且a≠1)的圖象恒過定點P,若角a的頂點與原點重合,始邊與x軸的正半軸重合,終邊經(jīng)過點P.則sin2a-sin2a的值為(  )
A、
5
13
B、-
5
13
C、
3
13
D、-
3
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos(ωx+φ)-
3
sin(ωx+φ),(ω>0,|φ|<
π
2
)且其圖象相鄰的兩條對稱軸為x=0,x=
π
2
,則( 。
A、y=f(x)的最小正周期為2π,且在(0,π)上為增函數(shù)
B、y=f(x)的最小正周期為π,且在 (0,π)上為減函數(shù)
C、y=f(x)的最小正周期為π,且在(0,
π
2
)上為增函數(shù)
D、y=f(x)的最小正周期為π,且在(0,
π
2
)上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=tan(2x-
π
3
).
(1)求f(x)的定義域、周期和單調(diào)區(qū)間;
(2)求不等式-1≤f(x)≤
3
的解集;
(3)求f(x),x∈[0,π]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)導(dǎo)數(shù)的說法錯誤的是(  )
A、f′(x)就是曲線f(x)在點(x0,f(x0))的切線的斜率
B、f′(x0)與(f(x0))′意義是一樣的
C、設(shè)s=s(t)是位移函數(shù),則s′(t0)表示物體在t=t0時刻的瞬時速度
D、設(shè)v=v(t)是速度函數(shù),則v′(t0)表示物體在t=t0時刻的加速度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于隨機(jī)抽樣的說法不正確的是( 。
A、簡單隨機(jī)抽樣是一種逐個抽取不放回的抽樣
B、系統(tǒng)抽樣和分層抽樣中每個個體被抽到的概率都相等
C、有2008個零件,先用隨機(jī)數(shù)表法剔除8個,再用系統(tǒng)抽樣方法抽取抽取20個作為樣本,每個零件入選樣本的概率都為1/2000
D、當(dāng)總體是由差異明顯的幾個部分組成時適宜采取分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x-1|,若命題“?x1,x2∈[a,b]且x1<x2,使得f(x1)>f(x2)”為真命題,則下列結(jié)論一定正確的是(  )
A、a≥0B、a<0
C、b≤0D、b>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2-x+1(x>0)的反函數(shù)是( 。
A、y=log2(x-1),x∈(1,2)
B、y=1og2
1
x-1
,x∈(1,2)
C、y=log2(x-1),x∈(1,2]
D、y=1og2
1
x-1
,x∈(1,2]

查看答案和解析>>

同步練習(xí)冊答案