10.如圖,給定由10個(gè)點(diǎn)(任意相鄰兩點(diǎn)距離為1,)組成的正三角形點(diǎn)陣,在其中任意取三個(gè)點(diǎn),以這三個(gè)點(diǎn)為頂點(diǎn)構(gòu)成的正三角形的個(gè)數(shù)是(  )
A.12B.13C.15D.16

分析 按邊長(zhǎng)分為1,2,3,$\sqrt{3}$共4類(lèi),分別計(jì)算出個(gè)數(shù)即可.

解答 解:如圖所示,
邊長(zhǎng)為1的正三角形共有1+3+5=9個(gè);
邊長(zhǎng)為2的正三角形共有3個(gè);
邊長(zhǎng)為3的正三角形共有1個(gè).
邊長(zhǎng)為$\sqrt{3}$的有2個(gè):紅顏色和藍(lán)顏色的兩個(gè)三角形.
綜上可知:共有9+3+1+2=15個(gè).
故選:C.

點(diǎn)評(píng) 正確按邊長(zhǎng)分類(lèi)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在兩坐標(biāo)軸上截距均為m(m∈R)的直線l1與直線l2:2x+2y-3=0的距離為$\sqrt{2}$,則m=( 。
A.$\frac{7}{2}$B.7C.-1或7D.-$\frac{1}{2}$或$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知M={x|0<x<2},N={x|y=lg(x-1)},則M∩N=( 。
A.{x|0<x<2}B.{x|1<x<2}C.{x|x>0}D.{x|x≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,且離心率是$\frac{1}{2}$,過(guò)坐標(biāo)原點(diǎn)O的任一直線交橢圓C于M、N兩點(diǎn),且|NF2|+|MF2|=4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓C交于不同的兩點(diǎn)A、B,且與圓x2+y2=1相切,
(i)求證:m2=k2+1;
(ii)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)復(fù)數(shù)z1=1-i,z2=1+i,其中i是虛數(shù)單位,則$\frac{{z}_{1}}{{z}_{2}}$的模為(  )
A.$\frac{1}{4}$B.$\sqrt{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在各棱長(zhǎng)均為2的三棱柱ABC-A1B1C1中,側(cè)面A1ACC1⊥底面ABC,∠A1AC=60°.
(1)求側(cè)棱AA1與平面AB1C所成角的正弦值的大;
(2)已知點(diǎn)D滿足$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,在直線AA1上是否存在點(diǎn)P,使DP∥平面AB1C?若存在,請(qǐng)確定點(diǎn)P的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,一個(gè)摩天輪的半徑為8m,每12min旋轉(zhuǎn)一周,最低點(diǎn)離地面為2m,若摩天輪邊緣某點(diǎn)P從最低點(diǎn)按逆時(shí)針?lè)较蜷_(kāi)始旋轉(zhuǎn),則點(diǎn)P離地面的距離h(m)與時(shí)間t(min)之間的函數(shù)關(guān)系是( 。
A.h=8cost+10B.h=-8cos$\frac{π}{3}$t+10C.h=-8sin$\frac{π}{6}$t+10D.h=-8cos$\frac{π}{6}$t+10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知直線2x+y-2=0經(jīng)過(guò)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的上頂點(diǎn)與右焦點(diǎn),則橢圓的方程為( 。
A.$\frac{x^2}{5}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{9}+\frac{y^2}{4}=1$D.$\frac{x^2}{6}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.自主招生,是高校選拔錄取工作改革的重要環(huán)節(jié),通過(guò)高考自主招生筆試和面試之后,可以得到相應(yīng)的高考降分政策;某高中高一學(xué)生共有1000人,其中城填初中畢業(yè)生750名(稱(chēng)為“城填生“),農(nóng)村初中畢業(yè)生250人(稱(chēng)為“農(nóng)村生“);為了摸清學(xué)生是否愿意參加自主招生,以便安排自主招生培訓(xùn),擬采用分層抽樣的方法抽取100名學(xué)生進(jìn)行調(diào)查;
(1)試完成下列2×2聯(lián)表,并分析是否有95%以上的把握說(shuō)“是否愿意參加自主招生“與生源有關(guān).
愿意參加不愿意參加合計(jì)
城填生502575
農(nóng)村生101525
合計(jì)6040100
(2)現(xiàn)對(duì)愿意參加自主招生的同學(xué)組織摸底考試,考試題共有5道題,每題20分,對(duì)于這5道題,考生“高富帥”完全會(huì)答的有3道,不完全會(huì)的有2道,不完全會(huì)的每道題她得分S的概率滿足:SKIPIF 1<0,假設(shè)解答各題之間沒(méi)有影響.
①對(duì)于一道不完全會(huì)的題,求“高富帥”得分的均值E(s);
②試求“高富帥”在本次摸底考試中總得分的數(shù)學(xué)期望.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊(cè)答案