已知下列直線的傾斜角,求直線的斜率:
(1)a=30°
(2)a=45°
(3)a=120°
(4)a=135°.
考點(diǎn):直線的斜率
專題:直線與圓
分析:根據(jù)直線斜率的定義,當(dāng)a≠90°,斜率k=tanα,計(jì)算即可.
解答: 解:根據(jù)直線斜率的定義,得;
(1)當(dāng)a=30°時(shí),斜率k=tan30°=
3
3
;
(2)當(dāng)a=45°時(shí),斜率k=tan45°=1;
(3)當(dāng)a=120°時(shí),斜率k=tan120°=tan(180°-60°)=-tan60°=-
3

(4)當(dāng)a=135°時(shí),斜率k=tan135°=tan(180°-45°)=-tan45°=-1.
點(diǎn)評(píng):本題考查了根據(jù)直線的傾斜角求直線的斜率的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Rt△ABC(∠A=90°)的外接圓為圓O,過(guò)A的切線AM交BC于點(diǎn)M,過(guò)M作直線交AB,AC于點(diǎn)D,E,且AD=AE
(1)求證:MD平分角∠AMB;
(2)若AB=AM,求
MC
MA
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

存在實(shí)數(shù)a使得方程cosx=a在[0,2π]上有兩個(gè)不相等的實(shí)數(shù)根x1,x2,則sin
x1+x2
3
=(  )
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線4x+3y+a=0與圓x2+y2=4相切,則實(shí)數(shù)a=
 
;若直線4x+3y+a=0與圓x2+y2=4相交于AB兩點(diǎn),且|AB|=2
3
,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)A(1,-3)的圓x2+y2=10的切線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若p=0.7,則輸出的n為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式3x+b>
4-x2
(-2≤x≤2),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了得到函數(shù)y=sin2x(x∈R)的圖象,可以把函數(shù)y=sin(3x+
π
6
)(x∈R)的圖象上所有點(diǎn)的( 。
A、縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的
3
2
倍,然后向右平移
π
12
個(gè)單位
B、縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的
3
2
倍,然后向左平移
π
6
個(gè)單位
C、縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的
3
2
倍,然后向右平移
π
6
個(gè)單位
D、縱坐標(biāo)不變,橫坐標(biāo)縮短到到原來(lái)的
3
2
倍,然后向左平移
π
12
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x-2+lnx的零點(diǎn)所在的一個(gè)區(qū)間是(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案