分析 用三角恒等變換化簡函數(shù)f(x),利用正弦函數(shù)的周期公式即可求出f(x)的最小正周期;進(jìn)而根據(jù)正弦函數(shù)的單調(diào)性,求出f(x)的單調(diào)增區(qū)間即可.
解答 解:∵函數(shù)f(x)=sin2x+cos2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴f(x)的最小正周期為T=$\frac{2π}{2}$=π;
∵f(x)=2sin(2x+$\frac{π}{4}$),
∴令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z;
∴kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z;
∴函數(shù)f(x)的單調(diào)增區(qū)間是$[{kπ-\frac{3π}{8},kπ+\frac{π}{8}}],k∈Z$.
故答案為:π,$[{kπ-\frac{3π}{8},kπ+\frac{π}{8}}],k∈Z$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換問題,也考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,+∞) | B. | [$\frac{3}{2}$,3) | C. | (1,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧(¬q)是真命題 | B. | (¬p)∨q是真命題 | C. | p∧q是假命題 | D. | p∨q是假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 線段 | B. | 雙曲線的一支 | C. | 圓 | D. | 射線 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com