17.執(zhí)行如圖所示的程序框圖,若輸出的$S=\frac{2016}{4033}$,則判斷框內(nèi)應(yīng)填入( 。
A.i>2014B.i>2014C.i>2015D.i>2017

分析 解:模擬執(zhí)行如圖所示的程序框圖,得出程序運(yùn)行后是計(jì)算并輸出
S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$的值,當(dāng)輸出$S=\frac{2016}{4033}$時(shí)求出n的值,即可得出結(jié)論.

解答 解:模擬執(zhí)行如圖所示的程序框圖,如下;
i=1,S=0,S=$\frac{1}{1×3}$,
i=2,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$,
i=3,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$,…,
i=n,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$
=(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)×$\frac{1}{2}$
=(1-$\frac{1}{2n+1}$)×$\frac{1}{2}$
=$\frac{n}{2n+1}$,
輸出的$S=\frac{2016}{4033}$=$\frac{n}{2n+1}$,解得n=2016;
所以判斷框內(nèi)應(yīng)填入i>2015.
故選:C.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問題,也考查了數(shù)列求和的應(yīng)用問題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.關(guān)于下列幾何體,說法正確的是( 。
A.圖①是圓柱B.圖②和圖③是圓錐C.圖④和圖⑤是圓臺(tái)D.圖⑤是圓臺(tái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)列{an}的通項(xiàng)公式${a_n}=cos\frac{nπ}{2}$,其前n項(xiàng)和為Sn,則S2015等于( 。
A.1008B.2015C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等比數(shù)列{an}的前n和為Sn,若$\frac{S_6}{S_3}=4$,則$\frac{S_9}{S_3}$=(  )
A.5B.9C.13D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.關(guān)于x的方程$\sqrt{4-{x^2}}-kx+2k-3=0$有兩個(gè)不同實(shí)根時(shí),實(shí)數(shù)k的取值范圍是$\frac{5}{12}<k≤\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}+4,}&{x<-1}\\{a{x^2}+4x,}&{x≥-1}\end{array}}\right.$(a∈R).
(Ⅰ)若a=1,解不等式f(x)<12;
(Ⅱ)若總存在x0∈[-1,1],使得f(x0)=3-a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.正方體OABC-O1A1B1C1(O為坐標(biāo)原點(diǎn))中A(10,-5,10),C(-11,-2,10),O1(-2,-14,-5),則頂點(diǎn)B1的坐標(biāo)為(-3,-21,-15).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系xOy的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線C1的極坐標(biāo)方程為ρ=2(cosθ+sinθ),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=-sinα}\end{array}\right.$ (α為參數(shù)).
(1)求曲線C1,C2的直角坐標(biāo)方程;
(2)直線l:$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))與曲線C1交于A,B兩點(diǎn),與y軸交于E,求|EA|+|EB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若關(guān)于x的不等式lnx>ax-1的解集為{x|x>2},則不等式lnx<1-$\frac{a}{x}$的解集為( 。
A.{x|x>2}B.{x|0<x<2}C.{x|x>$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$}

查看答案和解析>>

同步練習(xí)冊(cè)答案