已知一個(gè)棱長(zhǎng)為2的正方體,被一個(gè)平面截后所得幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、7
B、
23
3
C、
47
6
D、
7
3
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由題意,直觀圖為正方體去了一個(gè)角,即可求出幾何體的體積.
解答: 解:由題意,直觀圖為正方體去了一個(gè)角,
∴幾何體的體積是8-
1
3
×
1
2
×1×1
=
47
6

故選:C.
點(diǎn)評(píng):本題考查由三視圖求面積、體積,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果x-1+yi,與i-3x是共軛復(fù)數(shù)(x、y是實(shí)數(shù)),則x+y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足an=3an-1+2(n≥2),且a1=2,則該數(shù)列的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

參數(shù)方程
x=sin2θ
y=cos2θ
(θ為參數(shù))化為普通方程是( 。
A、2x-y+1=0
B、2x+y-1=0
C、2x-y+1=0,x∈[0,1]
D、2x+y-1=0,x∈[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在多面體ABCDEF中,點(diǎn)O是矩形ABCD的對(duì)角線的交點(diǎn),三角形CDE是等邊三角形,棱EF∥BC且EF=
1
2
BC=2.求證:FO∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的極坐標(biāo)方程為ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,若直線l:kx+y+3=0與圓C相切.
求(1)圓C的直角坐標(biāo)方程;
(2)實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=|x-1|+|x+2|的最小值為a.
(1)求a的值;
(2)若m,n是正實(shí)數(shù),且m+n=a,求
1
m
+
2
n
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用計(jì)算機(jī)產(chǎn)生0~1之間的群與隨機(jī)數(shù)a,則事件-
1
2
<3a-1<0發(fā)生的概率為(  )
A、
1
3
B、
1
4
C、
1
5
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=
x2+ax+a
x
(x≠0),下列說(shuō)法正確的是
 

①函數(shù)f(x)有兩個(gè)極值點(diǎn)x=±
a

②函數(shù)f(x)的值域?yàn)椋?∞,-2
a
+a]∪[2
a
+a,+∞);
③當(dāng)a≤1時(shí),函數(shù)f(x)在[1,+∞)是增函數(shù);
④函數(shù)f(x)的圖象與x軸有兩個(gè)公共點(diǎn)的充要條件是a>4或a<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案