若雙曲線ax2+by2=1(ab<0)的漸近線方程為y=±
2
x,則該雙曲線的離心率為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:討論a>0,b<0,及a<0,b>0,將雙曲線方程化為標(biāo)準(zhǔn)方程,求出漸近線方程,得到b=-2a,再由離心率公式,計(jì)算即可得到.
解答: 解:若a>0,b<0,則雙曲線ax2+by2=1即為
x2
1
a
-
y2
-
1
b
=1,則漸近線方程為y=±
a
-b
x,
即有
a
-b
=2,
則雙曲線的離心率為e=
1
a
-
1
b
1
a
=
1-
a
b
=
1+2
=
3
;
若a<0,b>0,則雙曲線ax2+by2=1即為
y2
1
b
-
x2
-
1
a
=1,則漸近線方程為y=±
-a
b
x,
即有
-a
b
=2,
則雙曲線的離心率為e=
1
b
-
1
a
1
b
=
1-
b
a
=
1+
1
2
=
6
2

故答案為:
3
6
2
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),考查離心率的求法,考查分類(lèi)討論的方法,考查運(yùn)算能力,屬于中檔題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l過(guò)點(diǎn)(3,2),且與直線x+3y-9=0及x軸圍成底邊在x軸上的等腰三角形,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,AD⊥DB,其中三棱錐P-BCD的三視圖如圖所示,且sin∠BDC=
3
5


(I)求證:AD⊥PB;
(Ⅱ)若PA與平面PCD所成角的正弦值為 
12
13
65
,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

光線沿直線l1:x-2y+5=0射入遇直線l:3x-2y+7=0后反射求反射光線所在的直線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在10支鉛筆中,有8支正品和2支次品,現(xiàn)從中任取1支,則取得次品的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)焦點(diǎn)為(-6,0),離心率為2的雙曲線方程( 。
A、
x2
16
-
y2
48
=1
B、
x2
9
-
y2
27
=1
C、
x2
16
-
y2
48
=1或
x2
9
-
y2
27
=1
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx,g(x)=
1
2
x2+mx+
7
2
(m<0),直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(Ⅰ)求直線l的方程及m的值.
(2)在(1)的條件下求函數(shù)F(x)=x-
m
x
(x>0)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若兩圓x2+y2-2x+10y+1=0,x2+y2-2x+2y-m=0相交,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)研究發(fā)現(xiàn),學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開(kāi)始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過(guò)實(shí)驗(yàn)分析得知:f(t)=
-t2+26t+80 ,  0<t≤10
240 ,          10≤t≤20
kt+400 ,         20≤t≤40
,
(1)求出k的值,并指出講課開(kāi)始后多少分鐘,學(xué)生的注意力最集中?能堅(jiān)持多久?
(2)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到185,那么經(jīng)過(guò)適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

同步練習(xí)冊(cè)答案