(本題滿分12分)

  已知函數(shù)滿足

 (1)求常數(shù)的值;  

(2)求使成立的x的取值范圍.

 

【答案】

(1).(2)

【解析】

試題分析:(1)根據(jù)已知條件分析函數(shù)的定義域的范圍,進(jìn)而得到一個(gè)結(jié)論,那就是由于,所以,進(jìn)而解決了第一問,。

(2)在第一問的基礎(chǔ)上那么的解集也就分類討論得到。

解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011315305204275465/SYS201301131531259490229140_DA.files/image003.png">,所以;由,即,.(4分)

(2)(6分)

當(dāng)時(shí),由,從而,(8分)

當(dāng)時(shí),解,從而,(10分)

綜上可得,,即(11分)

所以的解集為.(12分)

考點(diǎn):本題主要考查了分段函數(shù)的解析式的求解和運(yùn)用

點(diǎn)評(píng):解決該試題的關(guān)鍵是能利用函數(shù)中由于,所以;由,即得到參數(shù)c的值。分析這一點(diǎn)是個(gè)難點(diǎn),也是突破口。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB;

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案