16.如果執(zhí)行如圖的程序框圖,輸入n=5,m=4,那么輸出的P為(  )
A.120B.180C.90D.60

分析 執(zhí)行程序框圖,依次寫(xiě)出每次循環(huán)得到的p,k的值,當(dāng)k=4時(shí),不滿(mǎn)足條件k<m,輸出p的值為120.

解答 解:執(zhí)行程序框圖,有
n=5,m=4,k=1,p=1
p=2,
滿(mǎn)足條件k<m,執(zhí)行循環(huán)體,k=2,p=6,
滿(mǎn)足條件k<m,執(zhí)行循環(huán)體,k=3,p=24,
滿(mǎn)足條件k<m,執(zhí)行循環(huán)體,k=4,p=120,
不滿(mǎn)足條件k<m,輸出p的值為120.
故選:A.

點(diǎn)評(píng) 本題考查循環(huán)結(jié)構(gòu),解本題的關(guān)鍵是看懂程序執(zhí)行的過(guò)程,讀懂其運(yùn)算結(jié)構(gòu)及執(zhí)行次數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將4名教師(含2名女教師)分配到三所學(xué)校支教,每所學(xué)校至少分到一名,且2名女教師不能分到同一學(xué)校,則不同分法的種數(shù)為( 。
A.48B.36C.30D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)A(0,1),拋物線C:y2=ax(a>0)的焦點(diǎn)為F,射線FA與拋物線相交于M,與其準(zhǔn)線相交于點(diǎn)N,若|FM|:|MN|=2:$\sqrt{5}$,則a=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知曲線y=$\frac{{x}^{2}}{2}$-2lnx+1的一條切線的斜率為1,則切點(diǎn)的橫坐標(biāo)為( 。
A.-1B.2C.-1或2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=sin2x-2sin2x,則函數(shù)f(x)的最大值為( 。
A.2B.2C.$\sqrt{2}$-1D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知平面向量$\overrightarrow{a}$=(-1,3),$\overrightarrow$=(4,-2),m$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$垂直,則m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知等差數(shù)列{an}中,a1=1,S11=33,則公差d等于( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.i是虛數(shù)單位,復(fù)數(shù)$\frac{1+i}{1-i}$=( 。
A.-iB.iC.$\frac{1}{2}$+$\frac{1}{2}$iD.$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,點(diǎn)A、B分別是角α、β的終邊與單位圓的交點(diǎn),且0<β<$\frac{π}{2}$<α<π.
(1)試用向量知識(shí)證明:cos(α-β)=cosαcosβ+sinαsinβ;
(2)若α=$\frac{3π}{4}$,cos(α-β)=$\frac{1}{3}$,求sin2β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案