已知函數(shù)f(x)=
2-
a
x
a-1
在[2,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是(  )
A、a<0或a>1
B、(0,1)
C、a<0或1<a≤4
D、0<a<1或1<a≤4
考點:函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得,當(dāng)a>1時,則t=2-
a
x
 在[2,+∞)上是正數(shù)且單調(diào)遞增,由此求得a的范圍;當(dāng)a<1時,則t=2-
a
x
 在[2,+∞)上是正數(shù)且單調(diào)遞減,由此求得a的范圍.
再把這兩個a的范圍取并集,即得所求.
解答: 解:∵函數(shù)f(x)=
2-
a
x
a-1
在[2,+∞)上單調(diào)遞增,當(dāng)a>1時,則t=2-
a
x
 在[2,+∞)上是正數(shù)且單調(diào)遞增,
a>1
2-
a
2
≥0
,求得1<a≤4.
當(dāng)a<1時,則t=2-
a
x
 在[2,+∞)上是正數(shù)且單調(diào)遞減,∴
a<1
2-
a
2
≥0
a<0
,求得a<0.
綜上可得,a<0或1<a≤4,
故選:C.
點評:本題主要考查函數(shù)的單調(diào)性的性質(zhì),體現(xiàn)了等價轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,各項均為正數(shù)且非常數(shù)數(shù)列,若a2=6,且a5-2a4-a3+12=0,則數(shù)列{an}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x2-2|x|-1=a}中有4個元素,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知拋物線y=x2+m的頂點M到直線l:
x=t
y=1+
3
t
(t為參數(shù))的距離為1
(Ⅰ)求m:
(Ⅱ)若直線l與拋物線相交于A,B兩點,與y軸交于N點,求|S△MAN-S△MBN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(2-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a0|+|a1|+|a2|+|a3|+|a4|+|a5|等于(  )
A、55
B、-1
C、25
D、-25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個命題:
①若ab≤0,則a≤0或b≤0;
②若a>b則am2>bm2
③在△ABC中,若sinA=sinB,則A=B;
④在一元二次方程ax2+bx+c=0中,若b2-4ac<0,則方程有實數(shù)根.
其中原命題、逆命題、否命題、逆否命題全都是真命題的是( 。
A、①B、②C、③D、④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知三邊a=3,b=5,c=7,則三角形ABC是( 。
A、銳角三角形B、直角三角形
C、鈍角三角形D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
1-2x
+x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知S(t)是由函數(shù)f(x)=
1
|x-2|+1
-
1
3
的圖象,g(x)=|x-2|-2的圖象與直線x=t圍成的圖形的面積,則函數(shù)S(t)的導(dǎo)函數(shù)y=S′(t)(0<t<4)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案