若A=45°,三邊a、b、c成等比數(shù)列,求
bsinB
c
考點(diǎn):正弦定理
專題:計(jì)算題,等差數(shù)列與等比數(shù)列,解三角形
分析:運(yùn)用等比數(shù)列的性質(zhì)得b2=ac,結(jié)合正弦定理,計(jì)算即可得到.
解答: 解:三邊a、b、c成等比數(shù)列即有
b2=ac,
由正弦定理可得,sin2B=sinAsinC,
bsinB
c
=
sinB•sinB
sinC

=sinA=sin45°=
2
2
點(diǎn)評(píng):本題考查正弦定理的運(yùn)用,考查等比數(shù)列的性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,O,E分別為B1D,AB的中點(diǎn).
(1)求證:OE∥平面BCC1B1
(2)求證:平面B1DC⊥平面B1DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若存在x0∈N+,n∈N+,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,則稱(x0,n)為函數(shù)f(x)的一個(gè)“生成點(diǎn)”.已知函數(shù)f(x)=2x+1,x∈N的“生成點(diǎn)”坐標(biāo)滿足二次函數(shù)g(x)=ax2+bx+c,則使函數(shù)y=g(x)與x軸無(wú)交點(diǎn)的a的取值范圍是(  )
A、0<α<
2+
3
16
B、
2-
3
16
<α<
2+
3
16
C、α<
2+
3
8
D、0<α<
2-
3
16
或α>
2+
3
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l過(guò)點(diǎn)P(
4
3
,2),且與x軸,y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)當(dāng)△AOB的周長(zhǎng)為12時(shí),求直線l的方程;
(2)當(dāng)△AOB的面積為6時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線C:
x2
3
-y2
=1的離心率是
 
;若拋物線y2=2mx與雙曲線C有相同的焦點(diǎn),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x2-3x+m(m為常數(shù))與x軸交于A,B兩點(diǎn)且線段AB的長(zhǎng)為
1
2

(1)求m的值;
(2)若拋物線的頂點(diǎn)為P,求△ABP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知當(dāng)x∈[1,2)時(shí),f(x)=|x-
5
3
|;當(dāng)x∈[1,+∞)時(shí),f(2x)=2f(x),則方程f(x)=log8x(1≤x≤12)的根的個(gè)數(shù)為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)圓P過(guò)定點(diǎn)F(1,0)且與直線x=-1相切,圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)過(guò)F作曲線C的兩條互相垂直的弦AB,CD,設(shè)AB,CD的中點(diǎn)分別為M、N,求證:直線MN必過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象是連續(xù)不斷的一條曲線,且滿足 f(1)>0,f(5)<0,若 f(3)>0.則f(x)在下列區(qū)間內(nèi)必有零點(diǎn)的是(  )
A、(1,3)
B、(3,5)
C、(2,4)
D、(3,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案