已知函數(shù)f(x)=sinx+cosx,給出以下四個命題:①函數(shù)f(x)的圖象可由y=
2
sinx
的圖象向右平移
π
4
個單位而得到;②直線x=
π
4
是函數(shù)f(x)圖象的一條對稱軸;③在區(qū)間[
π
4
4
]
上,函數(shù)f(x)是減函數(shù);④函數(shù)g(x)=f(x)•sinx的最小正周期是π.其中所有正確的命題的序號是
 
分析:先對函數(shù)進(jìn)行化簡為y=A(wx+ρ)的形式,根據(jù)左右平移的左加右減原則可判斷①;求出函數(shù)f(x)的最大值可判斷②;求出函數(shù)的單調(diào)遞減區(qū)間然后令k=0可判斷③;根據(jù)二倍角公式整理函數(shù)g(x)的解析式,求出最小正周期可判斷④.
解答:解:∵f(x)=sinx+cosx∴f(x)=
2
sin(x+
π
4

y=
2
sinx
的圖象向右平移
π
4
個單位得到y(tǒng)=
2
sin(x-
π
4
)≠f(x)=
2
sin(x+
π
4
).①不正確;
f(
π
4
)=
2
sin(
π
2
)=
2
為函數(shù)f(x)的最大值,故②正確;
π
2
+2kπ≤x+
π
4
2
+2kπ
,∴
π
4
+2kπ≤x≤
4
+2kπ

當(dāng)k=0時,
π
4
≤x≤
4
函數(shù)f(x)單調(diào)遞減,故③正確;
g(x)=f(x)•sinx=sin2x+sinxcosx=
1
2
+
3
2
sin(2x-
π
4
)

∴T=
2
,故④正確
故答案為:②③④
點評:本題主要考查三角函數(shù)的兩角和與差的正弦公式、最小正周期的求法、二倍角公式.三角函數(shù)部分公式比較多,容易記混,要強化記憶.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1,x2∈[-
π
3
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實數(shù)m的取值范圍;
(3)設(shè)直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(shù)(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據(jù)上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當(dāng)?shù)恼f明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-blnx在(1,2]是增函數(shù),g(x)=x-b
x
在(0,1)為減函數(shù).
(1)求b的值;
(2)設(shè)函數(shù)φ(x)=2ax-
1
x2
是區(qū)間(0,1]上的增函數(shù),且對于(0,1]內(nèi)的任意兩個變量s、t,f(s)≥?(t)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的對邊分別為a、b、c,滿足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標(biāo)方程;
②設(shè)點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數(shù)M;
(2)如果對任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案