8.若關(guān)于x的方程(4x+$\frac{5}{x}$)-|5x-$\frac{4}{x}$|=m在(0,+∞)內(nèi)恰有三個相異實根,則實數(shù)m的取值范圍為(6,$\frac{41}{10}\sqrt{5}$).

分析 分類討論以去掉絕對值號,從而利用基本不等式確定各自方程的根的個數(shù),從而解得.

解答 解:當x≥$\frac{2\sqrt{5}}{5}$時,5x-$\frac{4}{x}$≥0,
∵方程(4x+$\frac{5}{x}$)-|5x-$\frac{4}{x}$|=m,
∴(4x+$\frac{5}{x}$)-(5x-$\frac{4}{x}$)=m,即-x+$\frac{9}{x}$=m;
∴m≤$\frac{41}{10}\sqrt{5}$.
當0<x<$\frac{2\sqrt{5}}{5}$時,5x-$\frac{4}{x}$<0,
∵方程(4x+$\frac{5}{x}$)-|5x-$\frac{4}{x}$|=m,
∴(4x+$\frac{5}{x}$)+(5x-$\frac{4}{x}$)=m,
即9x+$\frac{1}{x}$=m;
∵9x+$\frac{1}{x}$≥6;
∴當m<6時,方程9x+$\frac{1}{x}$=m無解;
當m=6時,方程9x+$\frac{1}{x}$=m有且只有一個解;
當6<m<10時,方程9x+$\frac{1}{x}$=m在(0,1)上有兩個解;
當m=10時,方程9x+$\frac{1}{x}$=m的解為1,$\frac{1}{9}$;
綜上所述,實數(shù)m的取值范圍為(6,$\frac{41}{10}\sqrt{5}$).
故答案為:(6,$\frac{41}{10}\sqrt{5}$).

點評 本題考查了絕對值方程的解法與應(yīng)用,同時考查了基本不等式的應(yīng)用及轉(zhuǎn)化思想的應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.四面體ABCD中,AB、AC、AD兩兩垂直,且AB=1,AC=2,AD=4,則點A到平面BCD的距離是$\frac{4\sqrt{21}}{21}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知f(x)=$\left\{\begin{array}{l}{-\frac{2}{x},0<x≤1}\\{x+2,-4≤x≤0}\end{array}\right.$,則f(0)=2,f($\frac{1}{2}$)=-4,f[f($\frac{1}{2}$)]=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖,AB是圓O的直徑,點C在圓O上,延長BC到D使BC=CD,過C作圓O的切線交AD于E.若AB=6,ED=2,則BC=( 。
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=xlnx-ax2是減函數(shù).
(Ⅰ)求a的取值范圍;
(Ⅱ)證明:對任意n∈N,n>1,都有$\frac{1}{2ln2}$+$\frac{1}{3ln3}$+…+$\frac{1}{nlnn}$>$\frac{3{n}^{2}-n-2}{2n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在平面直角坐標系中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$(t為參數(shù)),在以直角坐標系的原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若直線l與曲線C相交于A、B兩點,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{ln(x-1)}{x-2}$(x>2).
(Ⅰ) 判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)若存在實數(shù)a,使得f(x)<a對?x∈(2,+∞)均成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知正三棱錐P-ABC底面邊長為6,底邊BC在平面α內(nèi),繞BC旋轉(zhuǎn)該三棱錐,若某個時刻它在平面α上的正投影是等腰直角三角形,則此三棱錐高的取值范圍是( 。
A.(0,$\sqrt{6}$]B.(0,$\frac{\sqrt{6}}{2}$]∪[$\sqrt{6}$,3]C.(0,$\frac{\sqrt{6}}{2}$]D.(0,$\sqrt{6}$]∪[3,$\frac{3\sqrt{6}}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某單位用3240萬元購得一塊空地,計劃在該地塊上建造一棟至少15層的小高層、每層3000平方米的樓房.經(jīng)測算,如果將樓房建為x(x≥15)層,則每平方米的平均建筑費用為840+kx(單位:元).已知蓋15層每平方米的平均建筑費用為1245元.
(1)求k的值;
(2)當樓房建為多少層時,樓房每平方米的平均綜合費用最少?(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=$\frac{購地總費用}{建筑總面積}$)

查看答案和解析>>

同步練習冊答案