【題目】現(xiàn)有長分別為1m、2m、3m的鋼管各3根(每根鋼管質(zhì)地均勻、粗細相同附有不同的編號),從中隨機抽取2根(假設(shè)各鋼管被抽取的可能性是均等的),再將抽取的鋼管相接焊成筆直的一根.若X表示新焊成的鋼管的長度(焊接誤差不計).
(1)求X的分布列;
(2)若Y=﹣λ2X+λ+1,E(Y)>1,求實數(shù)λ的取值范圍.

【答案】
(1)解:X可能的取值為2,3,4,5,6.

;

∴X的分布列為:

X

2

3

4

5

6

P


(2)解:

∵Y=﹣λ2X+λ+1,∴E(Y)=﹣λ2E(X)+λ+1=﹣4λ2+λ+1,

∵E(Y)>1,∴

∴實數(shù)λ的取值范圍是


【解析】(1)X可能的取值為2,3,4,5,6.求出對應(yīng)的概率,即可得X的分布列;(2)根據(jù)期望的公式進行求解即可.
【考點精析】通過靈活運用離散型隨機變量及其分布列,掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的圖象過點(﹣1,2),且在點(﹣1,f(﹣1))處的切線與直線x﹣5y+1=0垂直.
(1)求實數(shù)b,c的值;
(2)求f(x)在[﹣1,e](e為自然對數(shù)的底數(shù))上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為函數(shù)圖像的一部分,其中點是圖像的一個最高點,點是與點相鄰的圖像與軸的一個交點.

求函數(shù)的解析式;

若將函數(shù)的圖像沿軸向右平移個單位,再把所得圖像上每一點的橫坐標都變?yōu)樵瓉淼?/span>(縱坐標不變),得到函數(shù)的圖像,求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1中,M、N分別為棱C1D1、C1C的中點,有以下四個結(jié)論: ①直線AM與CC1是相交直線;
②直線AM與BN是平行直線;
③直線BN與MB1是異面直線;
④直線AM與DD1是異面直線.
其中正確的結(jié)論為(注:把你認為正確的結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,A(1,1)、B(7,3)、D(4,6),點M是線段AB的中點線段CM與BD交于點P.
(1)求直線CM的方程;
(2)求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域為R,f(x)= ,且對任意的x∈R都有f(x+1)=﹣ ,若在區(qū)間[﹣5,1]上函數(shù)g(x)=f(x)﹣mx+m恰有5個不同零點,則實數(shù)m的取值范圍是(
A.[﹣ ,﹣
B.(﹣ ,﹣ ]
C.(﹣ ,0]
D.(﹣ ,﹣ ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2013年第三季度,國家電網(wǎng)決定對城鎮(zhèn)居民用電計費標準作出調(diào)整,并根據(jù)用電情況將居民分為三類:第一類的用電區(qū)間在(0,170],第二類在(170,260],第三類在(260,+∞)(單位:千瓦時).某小區(qū)共有1000戶居民,現(xiàn)對他們的用電情況進行調(diào)查,得到頻率分布直方圖,如圖所示.

(1)求該小區(qū)居民用電量的中位數(shù)與平均數(shù);
(2)本月份該小區(qū)沒有第三類的用電戶出現(xiàn),為鼓勵居民節(jié)約用電,供電部門決定:對第一類每戶獎勵20元錢,第二類每戶獎勵5元錢,求每戶居民獲得獎勵的平均值;
(3)利用分層抽樣的方法從該小區(qū)內(nèi)選出5位居民代表,若從該5戶居民代表中任選兩戶居民,求這兩戶居民用電資費屬于不同類型的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線L經(jīng)過點P(﹣4,﹣3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線L的方程是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知長方體ABCD﹣A'B'C'D'中,AB=4,AD=3,AA'=2;

(1)求出異面直線AC'和BD所成角的余弦值;
(2)找出AC'與平面D'DBB'的交點,并說明理由.

查看答案和解析>>

同步練習冊答案