若數(shù)列{an}的通項(xiàng)是關(guān)于x的不等式x2-x<nx(n∈N*)的解集中整數(shù)的個(gè)數(shù)f(n)=

(1)求數(shù)列{an}的通項(xiàng)公式

(2)求證:對(duì)一切大于1的自然數(shù)n恒有<f(n)<1.

(1)解:原不等式的解集為{x|0<x≤n,n∈N*=.因此,an=n.

(2)證明:∵f(n)=

=,

即f(n)<1                             ①

又由于f(n)==(n≥2),

則f(n+1)=兩式相減得

f(n+1)-f(n)==0f(n+1)>f(n),

∴f(n)當(dāng)n≥2且n∈N*是增函數(shù),

∴f(n)的最小值是f(2)=            ②

由①②得<f(n)<1成立.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的通項(xiàng)公式為
a
 
n
=5×(
2
5
)2n-2-4×(
2
5
)n-1(n∈N+)
,{an}的最大值為第x項(xiàng),最小項(xiàng)為第y項(xiàng),則x+y等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
4x+2
(x∈R).
(1)已知點(diǎn)(1,
1
6
)
在f(x)的圖象上,判斷其關(guān)于點(diǎn)(
1
2
,
1
4
)
對(duì)稱的點(diǎn)是否仍在f(x)的圖象上;
(2)求證:函數(shù)f(x)的圖象關(guān)于點(diǎn)(
1
2
,
1
4
)
對(duì)稱;
(3)若數(shù)列{an}的通項(xiàng)公式為an=f(
n
m
)
(m∈N*,n=1,2,…,m),求數(shù)列{an}的前m項(xiàng)和Sm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
4x+2
(x∈R)
,P1(x1,y1)、P2(x2,y2)是函數(shù)y=f(x)圖象上兩點(diǎn),且線段P1P2中點(diǎn)P的橫坐標(biāo)是
1
2

(1)求證點(diǎn)P的縱坐標(biāo)是定值; 
(2)若數(shù)列{an}的通項(xiàng)公式是an=f(
n
m
)
(m∈N*),n=1,2…m),求數(shù)列{an}的前m項(xiàng)和Sm; 
(3)在(2)的條件下,若m∈N*時(shí),不等式
am
Sm
am+1
Sm+1
恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2003•北京)若數(shù)列{an}的通項(xiàng)公式是an=
3-n+(-1)n3-n
2
,n=1,2,…
,則
lim
n→∞
(a1+a2+…+an)
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寶山區(qū)一模)若數(shù)列{an}的通項(xiàng)公式是an=3-n+(-2)-n+1,則 
lim
n→∞
(a1+a2+…+an)
=
7
6
7
6

查看答案和解析>>

同步練習(xí)冊(cè)答案