A(1,1,-1),B(2,2,2),C(3,2,4),則△ABC面積為
 
考點(diǎn):三角形的面積公式,空間兩點(diǎn)間的距離公式
專題:計(jì)算題,空間位置關(guān)系與距離
分析:利用向量的數(shù)量積可求得cosA,再求sinA,利用三角形的面積公式即可得出.
解答: 解:∵A(1,1,-1),B(2,2,2),C(3,2,4),
AB
=(1,1,3),
AC
=(2,1,5),
AB
AC
=18,|
AB
|=
11
,|
AC
|=
30

∴cosA=
18
11
30

∴sinA=
55
55

∴△ABC的面積S=
1
2
×
11
×
30
×
55
55
=
6
2

故答案為:
6
2
點(diǎn)評(píng):本題考查了向量的數(shù)量積、向量的夾角公式、三角形的面積公式,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某高校甲,乙,丙,丁四位研究生新生可通過抽簽的方式,在A,B,C,D四位老師為導(dǎo)師,且他們對(duì)導(dǎo)師的選擇相互獨(dú)立.
(Ⅰ)求甲、乙、丙三人都選擇D為導(dǎo)師的概率;
(Ⅱ)求四位研究生至少有一人選擇C作為導(dǎo)師的概率;
(Ⅲ)設(shè)四位選手選擇B為導(dǎo)師的人數(shù)ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱柱ABCD-A1B1C1D1中,AB=2,CC1=2
2
,E為CC1的中點(diǎn),則直線BE與AC1所成角的余弦值為(  )
A、
2
4
B、
6
6
C、
2
2
D、
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-a)(x-b)(其中a>b)的圖象如圖所示,則函數(shù)g(x)=a-x+b的圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|log2x|,0<x≤2
-x2+4x-3,x>2
,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是( 。
A、[2,3]
B、(2,3)
C、[2,3)
D、(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐O-ABCD(底面是正方形且頂點(diǎn)在頂面的射影是底面正方形的中心的棱錐叫做正四棱錐)的體積為12,底面邊長(zhǎng)為2
3
,則正四棱錐O-ABCD內(nèi)切球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)O(0,0)且與圓C:(x-2)2+y2=3有公共點(diǎn),則直線l的斜率最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin7°cos37°-sin83°sin37°的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,a17=66,通項(xiàng)公式是項(xiàng)數(shù)n的一次函數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)88是否是數(shù)列{an}中的項(xiàng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案