已知函數(shù)f(x)=|x|,用定義法判斷f(x)的奇偶性.
考點:函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:①求定義域為R;②判斷F(-x)與f(x)的關(guān)系.
解答: 解:函數(shù)f(x)=|x|的定義域為R,關(guān)于原點對稱,
f(-x)=|-x|=|x|=f(x).
所以f(x)=|x|是偶函數(shù).
點評:本題考查了函數(shù)奇偶性的判定;①判斷函數(shù)的定義域是否關(guān)于原點對稱;②如果不對稱是非奇非偶的函數(shù);如果對稱,再利用定義判斷f(-x)與f(x)的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),其f(x)=f(x-2),若f(x)在區(qū)間[2,3]單調(diào)遞減,則(  )
A、f(x)在區(qū)間[-3,-2]單調(diào)遞增
B、f(x)在區(qū)間[-2,-1]單調(diào)遞增
C、f(x)在區(qū)間[3,4]單調(diào)遞減
D、f(x)在區(qū)間[1,2]單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在高三某個班中,有
1
4
的學(xué)生數(shù)學(xué)成績優(yōu)秀,若從班中隨機找出5名學(xué)生,那么,其中數(shù)學(xué)成績優(yōu)秀的學(xué)生數(shù)X~B(5,
1
4
),則P(X=k)=
C
k
5
1
4
k•(
3
4
5-k取最大值時k的值為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2+mx-4y+1=0,過定點P(0,1)作斜率為1的直線交圓C于A、B兩點,P為線段AB的中點.
(1)求m的值;
(2)設(shè)E為圓C上不同于A、B的任意一點,求△ABE面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,且首項a1=
1
2
,a4=
1
16

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=
1
an
+log2an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班有54位同學(xué),正、副班長各一名,現(xiàn)選派6名同學(xué)參加某課外小組,在下列各種情況中,各有多少種不同的選法?
(1)正副班長必須入選;          
(2)正副班長至少有一人入選;
(3)班長有一人入選,班長以外的某二人不入選.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,以原點為圓心,以橢圓的短半軸長為半徑的圓與直線x-y+
6
=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓的右焦點F的直線l1與橢圓交于A、B,過F與直線l1垂直的直線l2與橢圓交于C、D,與直線l2:x=4交于P.
①求四邊形ABCD面積的最小值;
②求證:直線PA,PF,PB的斜率kPA,kPF,kPB成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的解析式為f(x)=-(x-1)2+16,令g(x)=(2-2a)x-f(x).
(1)若函數(shù)g(x)在x∈[0,2]上是單調(diào)增函數(shù),求實數(shù)a的取值范圍;
(2)求函數(shù)g(x)在x∈[0,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-1,2)為曲線C:y=2x2上的點,直線l1過點A,且與曲線C相切,
直線l2:x=a(a>-1)交曲線C于B,交直線l1于點D.
(Ⅰ) 求直線l1的方程;
(Ⅱ)設(shè)△BAD的面積為S1,求S1的值;
(Ⅲ) 設(shè)由曲線C,直線l1,l2所圍成的圖形的面積為S2,求證S1:S2的值為與a無關(guān)的常數(shù).

查看答案和解析>>

同步練習(xí)冊答案