已知函數(shù)f(x)的定義域為[2,5]且為減函數(shù),有f(2a-3)>f(a),則a的取值范圍是
 
考點:函數(shù)單調性的性質
專題:函數(shù)的性質及應用
分析:由題意可得2≤2a-3<a≤5,由此解得a的范圍.
解答: 解:∵函數(shù)f(x)的定義域為[2,5]且為減函數(shù),有f(2a-3)>f(a),
2≤2a-3≤5
2≤a≤5
2a-3<a
,即
2.5≤a≤4
2≤a≤5
a<3
,解得 2.5≤a<3,
故答案為:[2.5,3).
點評:本題主要考查函數(shù)的單調性的應用,體現(xiàn)了轉化的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

解方程:
x
+
x+2
+
2x+4
=2x-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設一動直線l與曲線C:(x-1)2+(y-1)2=1相切,此直線和x、y軸的交點分別為A、B,且OA=a,OB=b(a>2,b>2)
(1)a、b之間滿足什么關系?
(2)求△OAB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知圓中兩條弦AB與CD相交與F,且DF=CF=
2
,E是AB延長線上一點,AF:FB:BE=4:2:1,若CE與圓相切,則線段CE的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,2),
b
=(0,1),
c
=(k,-2),若(
a
-2
b
)⊥
c
,則實數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知l線的方程為:(2m+1)x+(m+1)y-7m-4=0(m∈R),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ2-20=2ρcosθ+4ρsinθ,則直線l被圓C截得的線段的最短長度為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知球O是正方體ABCD-A1B1C1D1的內切球,且平面ACD1截球O的截面面積為
π
6
,則正方形外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
16
+
y2
9
=1及直線l:(2m+1)x+(m+1)y=7m+4(m∈R)的位置關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-ax+3,f(2016)=20,則f(-2016)=
 

查看答案和解析>>

同步練習冊答案