17.在四面體ABCD中,A-BD-C為直二面角,AB=AD=5,BC=CD=DB=6,則直線(xiàn)AC與平面BCD所成角的正弦值為$\frac{4\sqrt{43}}{43}$.

分析 取BD中點(diǎn)O,連結(jié)AO,CO,則AO⊥平面BDC,AO⊥BD,CO⊥BD,從而∠AOC是二面角A-BD-C 平面角,且∠AOC=90°,由AO⊥平面BDC,知∠ACO是直線(xiàn)AC與平面BCD所成角,由此能求出直線(xiàn)AC與平面BCD所成角的正弦值.

解答 解:如圖,取BD中點(diǎn)O,連結(jié)AO,CO,
∵在四面體ABCD中,A-BD-C為直二面角,AB=AD=5,BC=CD=DB=6,
∴AO⊥平面BDC,AO⊥BD,CO⊥BD,
∴∠AOC是二面角A-BD-C 平面角,且∠AOC=90°,
∵AO⊥平面BDC,∴∠ACO是直線(xiàn)AC與平面BCD所成角,
∵AB=AD=5,BC=CD=DB=6,
∴AO=$\sqrt{{5}^{2}-{3}^{2}}$=4,CO=$\sqrt{{6}^{2}-{3}^{2}}$=3$\sqrt{3}$,AC=$\sqrt{16+27}$=$\sqrt{43}$,
∴sin∠ACO=$\frac{AO}{AC}$=$\frac{4}{\sqrt{43}}=\frac{4\sqrt{43}}{43}$.
∴直線(xiàn)AC與平面BCD所成角的正弦值為$\frac{4\sqrt{43}}{43}$.
故答案為:$\frac{4\sqrt{43}}{43}$.

點(diǎn)評(píng) 本題考查線(xiàn)面角的正弦值的求法;考查邏輯推理與空間想象能力,運(yùn)算求解能力;考查數(shù)形結(jié)合、化歸轉(zhuǎn)化思想.是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年河南省商丘市高一理下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

執(zhí)行如圖所示的程序框圖,如果輸入的,則輸出的s屬于( )

A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.四棱錐P-ABCD中,四邊形ABCD為平行四邊形,AC與BD交于點(diǎn)O,點(diǎn)G為BD上一點(diǎn),BG=2GD,$\overrightarrow{PA}$=$\overrightarrow{a}$,$\overrightarrow{PB}$=$\overrightarrow$,$\overrightarrow{PC}$=$\overrightarrow{c}$,用基底{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}表示向量$\overrightarrow{BG}$=$\frac{2}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow$+$\frac{2}{3}$$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},則(∁UP)∩Q=( 。
A.{1}B.{2,4}C.{2,4,6}D.{1,2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在邊長(zhǎng)為2的菱形ABCD中,∠BAD=60°,O為AC的中點(diǎn),點(diǎn)P為平面ABCD外一點(diǎn),且平面PAC⊥平面ABCD,PO=1,PA=2.
(1)求證:PO⊥平面ABCD;
(2)求直線(xiàn)PA與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F2作x軸的垂線(xiàn)交橢圓C于點(diǎn)P,若sin∠PF1F2=$\frac{1}{3}$,則( 。
A.a=$\sqrt{2}$bB.a=2bC.a=$\sqrt{3}$bD.a=3b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f($\frac{x}{2}$)=-$\frac{1}{8}$x3+$\frac{m}{4}$x2-m(0<m<20).
(1)討論函數(shù)f(x)在區(qū)間[2,6]上的單調(diào)性;
(2)若曲線(xiàn)y=f(x)僅在兩個(gè)不同的點(diǎn)A(x1,f(x1)),B(x2,f(x2))處的切線(xiàn)都經(jīng)過(guò)點(diǎn)(2,lg$\frac{1}{a}$),其中a≥1,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為4的正三角形,側(cè)棱AA1垂直于底面ABC,AA1=2$\sqrt{2}$,D為BC中點(diǎn).
(Ⅰ)若E為棱CC1的中點(diǎn),求證:A1C⊥DE;
(Ⅱ)若點(diǎn)E在棱CC1上,直線(xiàn)CE與平面ADE所成角為α,當(dāng)sinα=$\frac{2\sqrt{5}}{5}$時(shí),求CE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若直線(xiàn)y=kx+2k與曲線(xiàn)$y=\sqrt{1-{x^2}}$有兩個(gè)不同的交點(diǎn),則k的取值范圍是(  )
A.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$B.$[{0,\frac{{\sqrt{3}}}{3}})$C.$[{-\sqrt{3},\sqrt{3}}]$D.$[{0,\sqrt{3}})$

查看答案和解析>>

同步練習(xí)冊(cè)答案